Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem15 Structured version   Visualization version   GIF version

 Description: Lemma for paddass 34142. Use elpaddn0 34104 to eliminate 𝑦 and 𝑧 from paddasslem14 34137. (Contributed by NM, 11-Jan-2012.)
Hypotheses
Ref Expression
paddasslem.a 𝐴 = (Atoms‘𝐾)
paddasslem.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddasslem15 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))

Proof of Theorem paddasslem15
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr2r 1114 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) → 𝑟 ∈ (𝑌 + 𝑍))
2 simpl1 1057 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) → 𝐾 ∈ HL)
3 hllat 33668 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
42, 3syl 17 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) → 𝐾 ∈ Lat)
5 simpl22 1133 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) → 𝑌𝐴)
6 simpl23 1134 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) → 𝑍𝐴)
7 simpl3 1059 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) → (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅))
8 paddasslem.l . . . . 5 = (le‘𝐾)
9 paddasslem.j . . . . 5 = (join‘𝐾)
10 paddasslem.a . . . . 5 𝐴 = (Atoms‘𝐾)
11 paddasslem.p . . . . 5 + = (+𝑃𝐾)
128, 9, 10, 11elpaddn0 34104 . . . 4 (((𝐾 ∈ Lat ∧ 𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) → (𝑟 ∈ (𝑌 + 𝑍) ↔ (𝑟𝐴 ∧ ∃𝑦𝑌𝑧𝑍 𝑟 (𝑦 𝑧))))
134, 5, 6, 7, 12syl31anc 1321 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) → (𝑟 ∈ (𝑌 + 𝑍) ↔ (𝑟𝐴 ∧ ∃𝑦𝑌𝑧𝑍 𝑟 (𝑦 𝑧))))
141, 13mpbid 221 . 2 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) → (𝑟𝐴 ∧ ∃𝑦𝑌𝑧𝑍 𝑟 (𝑦 𝑧)))
15 simp11 1084 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟)) ∧ (𝑟𝐴 ∧ (𝑦𝑌𝑧𝑍) ∧ 𝑟 (𝑦 𝑧))) → 𝐾 ∈ HL)
16 simp12 1085 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟)) ∧ (𝑟𝐴 ∧ (𝑦𝑌𝑧𝑍) ∧ 𝑟 (𝑦 𝑧))) → (𝑋𝐴𝑌𝐴𝑍𝐴))
17 simp21 1087 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟)) ∧ (𝑟𝐴 ∧ (𝑦𝑌𝑧𝑍) ∧ 𝑟 (𝑦 𝑧))) → 𝑝𝐴)
18 simp31 1090 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟)) ∧ (𝑟𝐴 ∧ (𝑦𝑌𝑧𝑍) ∧ 𝑟 (𝑦 𝑧))) → 𝑟𝐴)
1917, 18jca 553 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟)) ∧ (𝑟𝐴 ∧ (𝑦𝑌𝑧𝑍) ∧ 𝑟 (𝑦 𝑧))) → (𝑝𝐴𝑟𝐴))
20 simp22l 1173 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟)) ∧ (𝑟𝐴 ∧ (𝑦𝑌𝑧𝑍) ∧ 𝑟 (𝑦 𝑧))) → 𝑥𝑋)
21 simp32l 1179 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟)) ∧ (𝑟𝐴 ∧ (𝑦𝑌𝑧𝑍) ∧ 𝑟 (𝑦 𝑧))) → 𝑦𝑌)
22 simp32r 1180 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟)) ∧ (𝑟𝐴 ∧ (𝑦𝑌𝑧𝑍) ∧ 𝑟 (𝑦 𝑧))) → 𝑧𝑍)
2320, 21, 223jca 1235 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟)) ∧ (𝑟𝐴 ∧ (𝑦𝑌𝑧𝑍) ∧ 𝑟 (𝑦 𝑧))) → (𝑥𝑋𝑦𝑌𝑧𝑍))
24 simp23 1089 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟)) ∧ (𝑟𝐴 ∧ (𝑦𝑌𝑧𝑍) ∧ 𝑟 (𝑦 𝑧))) → 𝑝 (𝑥 𝑟))
25 simp33 1092 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟)) ∧ (𝑟𝐴 ∧ (𝑦𝑌𝑧𝑍) ∧ 𝑟 (𝑦 𝑧))) → 𝑟 (𝑦 𝑧))
2624, 25jca 553 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟)) ∧ (𝑟𝐴 ∧ (𝑦𝑌𝑧𝑍) ∧ 𝑟 (𝑦 𝑧))) → (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧)))
278, 9, 10, 11paddasslem14 34137 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧)))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))
2815, 16, 19, 23, 26, 27syl32anc 1326 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟)) ∧ (𝑟𝐴 ∧ (𝑦𝑌𝑧𝑍) ∧ 𝑟 (𝑦 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))
29283expia 1259 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) → ((𝑟𝐴 ∧ (𝑦𝑌𝑧𝑍) ∧ 𝑟 (𝑦 𝑧)) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))
30293expd 1276 . . . . 5 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) → (𝑟𝐴 → ((𝑦𝑌𝑧𝑍) → (𝑟 (𝑦 𝑧) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))))
3130imp 444 . . . 4 ((((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) ∧ 𝑟𝐴) → ((𝑦𝑌𝑧𝑍) → (𝑟 (𝑦 𝑧) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))))
3231rexlimdvv 3019 . . 3 ((((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) ∧ 𝑟𝐴) → (∃𝑦𝑌𝑧𝑍 𝑟 (𝑦 𝑧) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))
3332expimpd 627 . 2 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) → ((𝑟𝐴 ∧ ∃𝑦𝑌𝑧𝑍 𝑟 (𝑦 𝑧)) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))
3414, 33mpd 15 1 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑌 ≠ ∅ ∧ 𝑍 ≠ ∅)) ∧ (𝑝𝐴 ∧ (𝑥𝑋𝑟 ∈ (𝑌 + 𝑍)) ∧ 𝑝 (𝑥 𝑟))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∃wrex 2897   ⊆ wss 3540  ∅c0 3874   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  lecple 15775  joincjn 16767  Latclat 16868  Atomscatm 33568  HLchlt 33655  +𝑃cpadd 34099 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-padd 34100 This theorem is referenced by:  paddasslem16  34139
 Copyright terms: Public domain W3C validator