Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovolval4lem2 Structured version   Visualization version   GIF version

Theorem ovolval4lem2 39540
 Description: The value of the Lebesgue outer measure for subsets of the reals. Similar to ovolval3 39537, but here 𝑓 is may represent unordered interval bounds. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovolval4lem2.a (𝜑𝐴 ⊆ ℝ)
ovolval4lem2.m 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
ovolval4lem2.g 𝐺 = (𝑛 ∈ ℕ ↦ ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩)
Assertion
Ref Expression
ovolval4lem2 (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
Distinct variable groups:   𝐴,𝑓,𝑦   𝑛,𝐺   𝑓,𝑛   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑛)   𝐴(𝑛)   𝐺(𝑦,𝑓)   𝑀(𝑦,𝑓,𝑛)

Proof of Theorem ovolval4lem2
Dummy variables 𝑔 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolval4lem2.a . 2 (𝜑𝐴 ⊆ ℝ)
2 ovolval4lem2.m . . 3 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
3 iftrue 4042 . . . . . . . . . . . . . . . 16 ((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)) → if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))) = (2nd ‘(𝑓𝑛)))
43opeq2d 4347 . . . . . . . . . . . . . . 15 ((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ = ⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩)
54adantl 481 . . . . . . . . . . . . . 14 (((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) ∧ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ = ⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩)
6 df-br 4584 . . . . . . . . . . . . . . . 16 ((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)) ↔ ⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩ ∈ ≤ )
76biimpi 205 . . . . . . . . . . . . . . 15 ((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)) → ⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩ ∈ ≤ )
87adantl 481 . . . . . . . . . . . . . 14 (((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) ∧ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))) → ⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩ ∈ ≤ )
95, 8eqeltrd 2688 . . . . . . . . . . . . 13 (((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) ∧ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ ∈ ≤ )
10 iffalse 4045 . . . . . . . . . . . . . . . 16 (¬ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)) → if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))) = (1st ‘(𝑓𝑛)))
1110opeq2d 4347 . . . . . . . . . . . . . . 15 (¬ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ = ⟨(1st ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))⟩)
1211adantl 481 . . . . . . . . . . . . . 14 (((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) ∧ ¬ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ = ⟨(1st ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))⟩)
13 elmapi 7765 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) → 𝑓:ℕ⟶(ℝ × ℝ))
1413ffvelrnda 6267 . . . . . . . . . . . . . . . . . 18 ((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ (ℝ × ℝ))
15 xp1st 7089 . . . . . . . . . . . . . . . . . 18 ((𝑓𝑛) ∈ (ℝ × ℝ) → (1st ‘(𝑓𝑛)) ∈ ℝ)
1614, 15syl 17 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → (1st ‘(𝑓𝑛)) ∈ ℝ)
1716leidd 10473 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → (1st ‘(𝑓𝑛)) ≤ (1st ‘(𝑓𝑛)))
18 df-br 4584 . . . . . . . . . . . . . . . 16 ((1st ‘(𝑓𝑛)) ≤ (1st ‘(𝑓𝑛)) ↔ ⟨(1st ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))⟩ ∈ ≤ )
1917, 18sylib 207 . . . . . . . . . . . . . . 15 ((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → ⟨(1st ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))⟩ ∈ ≤ )
2019adantr 480 . . . . . . . . . . . . . 14 (((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) ∧ ¬ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))) → ⟨(1st ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))⟩ ∈ ≤ )
2112, 20eqeltrd 2688 . . . . . . . . . . . . 13 (((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) ∧ ¬ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ ∈ ≤ )
229, 21pm2.61dan 828 . . . . . . . . . . . 12 ((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ ∈ ≤ )
23 xp2nd 7090 . . . . . . . . . . . . . . 15 ((𝑓𝑛) ∈ (ℝ × ℝ) → (2nd ‘(𝑓𝑛)) ∈ ℝ)
2414, 23syl 17 . . . . . . . . . . . . . 14 ((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → (2nd ‘(𝑓𝑛)) ∈ ℝ)
2524, 16ifcld 4081 . . . . . . . . . . . . 13 ((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))) ∈ ℝ)
26 opelxpi 5072 . . . . . . . . . . . . 13 (((1st ‘(𝑓𝑛)) ∈ ℝ ∧ if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))) ∈ ℝ) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ ∈ (ℝ × ℝ))
2716, 25, 26syl2anc 691 . . . . . . . . . . . 12 ((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ ∈ (ℝ × ℝ))
2822, 27elind 3760 . . . . . . . . . . 11 ((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑛 ∈ ℕ) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ ∈ ( ≤ ∩ (ℝ × ℝ)))
29 ovolval4lem2.g . . . . . . . . . . 11 𝐺 = (𝑛 ∈ ℕ ↦ ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩)
3028, 29fmptd 6292 . . . . . . . . . 10 (𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
31 reex 9906 . . . . . . . . . . . . . 14 ℝ ∈ V
3231, 31xpex 6860 . . . . . . . . . . . . 13 (ℝ × ℝ) ∈ V
3332inex2 4728 . . . . . . . . . . . 12 ( ≤ ∩ (ℝ × ℝ)) ∈ V
3433a1i 11 . . . . . . . . . . 11 (𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) → ( ≤ ∩ (ℝ × ℝ)) ∈ V)
35 nnex 10903 . . . . . . . . . . . 12 ℕ ∈ V
3635a1i 11 . . . . . . . . . . 11 (𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) → ℕ ∈ V)
3734, 36elmapd 7758 . . . . . . . . . 10 (𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) → (𝐺 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ↔ 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))))
3830, 37mpbird 246 . . . . . . . . 9 (𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) → 𝐺 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ))
3938adantr 480 . . . . . . . 8 ((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))) → 𝐺 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ))
40 simpr 476 . . . . . . . . . . 11 ((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝐴 ran ((,) ∘ 𝑓)) → 𝐴 ran ((,) ∘ 𝑓))
41 rexpssxrxp 9963 . . . . . . . . . . . . . . . 16 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
4241a1i 11 . . . . . . . . . . . . . . 15 (𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) → (ℝ × ℝ) ⊆ (ℝ* × ℝ*))
4313, 42fssd 5970 . . . . . . . . . . . . . 14 (𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) → 𝑓:ℕ⟶(ℝ* × ℝ*))
44 fveq2 6103 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → (𝑓𝑘) = (𝑓𝑛))
4544fveq2d 6107 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → (1st ‘(𝑓𝑘)) = (1st ‘(𝑓𝑛)))
4644fveq2d 6107 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → (2nd ‘(𝑓𝑘)) = (2nd ‘(𝑓𝑛)))
4745, 46breq12d 4596 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → ((1st ‘(𝑓𝑘)) ≤ (2nd ‘(𝑓𝑘)) ↔ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))))
4847cbvrabv 3172 . . . . . . . . . . . . . 14 {𝑘 ∈ ℕ ∣ (1st ‘(𝑓𝑘)) ≤ (2nd ‘(𝑓𝑘))} = {𝑛 ∈ ℕ ∣ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))}
4943, 29, 48ovolval4lem1 39539 . . . . . . . . . . . . 13 (𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) → ( ran ((,) ∘ 𝑓) = ran ((,) ∘ 𝐺) ∧ (vol ∘ ((,) ∘ 𝑓)) = (vol ∘ ((,) ∘ 𝐺))))
5049simpld 474 . . . . . . . . . . . 12 (𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) → ran ((,) ∘ 𝑓) = ran ((,) ∘ 𝐺))
5150adantr 480 . . . . . . . . . . 11 ((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝐴 ran ((,) ∘ 𝑓)) → ran ((,) ∘ 𝑓) = ran ((,) ∘ 𝐺))
5240, 51sseqtrd 3604 . . . . . . . . . 10 ((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝐴 ran ((,) ∘ 𝑓)) → 𝐴 ran ((,) ∘ 𝐺))
5352adantrr 749 . . . . . . . . 9 ((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))) → 𝐴 ran ((,) ∘ 𝐺))
54 simpr 476 . . . . . . . . . . 11 ((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))
5549simprd 478 . . . . . . . . . . . . . 14 (𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) → (vol ∘ ((,) ∘ 𝑓)) = (vol ∘ ((,) ∘ 𝐺)))
56 coass 5571 . . . . . . . . . . . . . . 15 ((vol ∘ (,)) ∘ 𝑓) = (vol ∘ ((,) ∘ 𝑓))
5756a1i 11 . . . . . . . . . . . . . 14 (𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) → ((vol ∘ (,)) ∘ 𝑓) = (vol ∘ ((,) ∘ 𝑓)))
58 coass 5571 . . . . . . . . . . . . . . 15 ((vol ∘ (,)) ∘ 𝐺) = (vol ∘ ((,) ∘ 𝐺))
5958a1i 11 . . . . . . . . . . . . . 14 (𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) → ((vol ∘ (,)) ∘ 𝐺) = (vol ∘ ((,) ∘ 𝐺)))
6055, 57, 593eqtr4d 2654 . . . . . . . . . . . . 13 (𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) → ((vol ∘ (,)) ∘ 𝑓) = ((vol ∘ (,)) ∘ 𝐺))
6160fveq2d 6107 . . . . . . . . . . . 12 (𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) → (Σ^‘((vol ∘ (,)) ∘ 𝑓)) = (Σ^‘((vol ∘ (,)) ∘ 𝐺)))
6261adantr 480 . . . . . . . . . . 11 ((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → (Σ^‘((vol ∘ (,)) ∘ 𝑓)) = (Σ^‘((vol ∘ (,)) ∘ 𝐺)))
6354, 62eqtrd 2644 . . . . . . . . . 10 ((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝐺)))
6463adantrl 748 . . . . . . . . 9 ((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))) → 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝐺)))
6553, 64jca 553 . . . . . . . 8 ((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))) → (𝐴 ran ((,) ∘ 𝐺) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝐺))))
66 coeq2 5202 . . . . . . . . . . . . 13 (𝑔 = 𝐺 → ((,) ∘ 𝑔) = ((,) ∘ 𝐺))
6766rneqd 5274 . . . . . . . . . . . 12 (𝑔 = 𝐺 → ran ((,) ∘ 𝑔) = ran ((,) ∘ 𝐺))
6867unieqd 4382 . . . . . . . . . . 11 (𝑔 = 𝐺 ran ((,) ∘ 𝑔) = ran ((,) ∘ 𝐺))
6968sseq2d 3596 . . . . . . . . . 10 (𝑔 = 𝐺 → (𝐴 ran ((,) ∘ 𝑔) ↔ 𝐴 ran ((,) ∘ 𝐺)))
70 coeq2 5202 . . . . . . . . . . . 12 (𝑔 = 𝐺 → ((vol ∘ (,)) ∘ 𝑔) = ((vol ∘ (,)) ∘ 𝐺))
7170fveq2d 6107 . . . . . . . . . . 11 (𝑔 = 𝐺 → (Σ^‘((vol ∘ (,)) ∘ 𝑔)) = (Σ^‘((vol ∘ (,)) ∘ 𝐺)))
7271eqeq2d 2620 . . . . . . . . . 10 (𝑔 = 𝐺 → (𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)) ↔ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝐺))))
7369, 72anbi12d 743 . . . . . . . . 9 (𝑔 = 𝐺 → ((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ (𝐴 ran ((,) ∘ 𝐺) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝐺)))))
7473rspcev 3282 . . . . . . . 8 ((𝐺 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝐴 ran ((,) ∘ 𝐺) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝐺)))) → ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))))
7539, 65, 74syl2anc 691 . . . . . . 7 ((𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))) → ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))))
7675rexlimiva 3010 . . . . . 6 (∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))))
77 inss2 3796 . . . . . . . . . . 11 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
78 mapss 7786 . . . . . . . . . . 11 (((ℝ × ℝ) ∈ V ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)) → (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ⊆ ((ℝ × ℝ) ↑𝑚 ℕ))
7932, 77, 78mp2an 704 . . . . . . . . . 10 (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ⊆ ((ℝ × ℝ) ↑𝑚 ℕ)
8079sseli 3564 . . . . . . . . 9 (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) → 𝑔 ∈ ((ℝ × ℝ) ↑𝑚 ℕ))
8180adantr 480 . . . . . . . 8 ((𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))) → 𝑔 ∈ ((ℝ × ℝ) ↑𝑚 ℕ))
82 simpr 476 . . . . . . . 8 ((𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))) → (𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))))
83 coeq2 5202 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → ((,) ∘ 𝑓) = ((,) ∘ 𝑔))
8483rneqd 5274 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ran ((,) ∘ 𝑓) = ran ((,) ∘ 𝑔))
8584unieqd 4382 . . . . . . . . . . 11 (𝑓 = 𝑔 ran ((,) ∘ 𝑓) = ran ((,) ∘ 𝑔))
8685sseq2d 3596 . . . . . . . . . 10 (𝑓 = 𝑔 → (𝐴 ran ((,) ∘ 𝑓) ↔ 𝐴 ran ((,) ∘ 𝑔)))
87 coeq2 5202 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((vol ∘ (,)) ∘ 𝑓) = ((vol ∘ (,)) ∘ 𝑔))
8887fveq2d 6107 . . . . . . . . . . 11 (𝑓 = 𝑔 → (Σ^‘((vol ∘ (,)) ∘ 𝑓)) = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))
8988eqeq2d 2620 . . . . . . . . . 10 (𝑓 = 𝑔 → (𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)) ↔ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))))
9086, 89anbi12d 743 . . . . . . . . 9 (𝑓 = 𝑔 → ((𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ (𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))))
9190rspcev 3282 . . . . . . . 8 ((𝑔 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ (𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
9281, 82, 91syl2anc 691 . . . . . . 7 ((𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
9392rexlimiva 3010 . . . . . 6 (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
9476, 93impbii 198 . . . . 5 (∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))))
9594a1i 11 . . . 4 (𝑦 ∈ ℝ* → (∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))))
9695rabbiia 3161 . . 3 {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))} = {𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))}
972, 96eqtri 2632 . 2 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))}
981, 97ovolval3 39537 1 (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∃wrex 2897  {crab 2900  Vcvv 3173   ∩ cin 3539   ⊆ wss 3540  ifcif 4036  ⟨cop 4131  ∪ cuni 4372   class class class wbr 4583   ↦ cmpt 4643   × cxp 5036  ran crn 5039   ∘ ccom 5042  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058   ↑𝑚 cmap 7744  infcinf 8230  ℝcr 9814  ℝ*cxr 9952   < clt 9953   ≤ cle 9954  ℕcn 10897  (,)cioo 12046  vol*covol 23038  volcvol 23039  Σ^csumge0 39255 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-rest 15906  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cmp 21000  df-ovol 23040  df-vol 23041  df-sumge0 39256 This theorem is referenced by:  ovolval4  39541
 Copyright terms: Public domain W3C validator