Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovolval2lem Structured version   Visualization version   GIF version

Theorem ovolval2lem 39533
Description: The value of the Lebesgue outer measure for subsets of the reals, expressed using Σ^. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypothesis
Ref Expression
ovolval2lem.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
Assertion
Ref Expression
ovolval2lem (𝜑 → ran seq1( + , ((abs ∘ − ) ∘ 𝐹)) = ran (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(vol‘(([,) ∘ 𝐹)‘𝑘))))
Distinct variable groups:   𝑘,𝐹,𝑛   𝜑,𝑘
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem ovolval2lem
StepHypRef Expression
1 reex 9906 . . . . . . 7 ℝ ∈ V
21, 1xpex 6860 . . . . . 6 (ℝ × ℝ) ∈ V
3 inss2 3796 . . . . . 6 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
4 mapss 7786 . . . . . 6 (((ℝ × ℝ) ∈ V ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)) → (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ⊆ ((ℝ × ℝ) ↑𝑚 ℕ))
52, 3, 4mp2an 704 . . . . 5 (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ⊆ ((ℝ × ℝ) ↑𝑚 ℕ)
6 ovolval2lem.1 . . . . . 6 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
72inex2 4728 . . . . . . . 8 ( ≤ ∩ (ℝ × ℝ)) ∈ V
87a1i 11 . . . . . . 7 (𝜑 → ( ≤ ∩ (ℝ × ℝ)) ∈ V)
9 nnex 10903 . . . . . . . 8 ℕ ∈ V
109a1i 11 . . . . . . 7 (𝜑 → ℕ ∈ V)
118, 10elmapd 7758 . . . . . 6 (𝜑 → (𝐹 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ↔ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))))
126, 11mpbird 246 . . . . 5 (𝜑𝐹 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ))
135, 12sseldi 3566 . . . 4 (𝜑𝐹 ∈ ((ℝ × ℝ) ↑𝑚 ℕ))
14 1zzd 11285 . . . . 5 (𝐹 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) → 1 ∈ ℤ)
15 nnuz 11599 . . . . 5 ℕ = (ℤ‘1)
16 elmapi 7765 . . . . . . . . . 10 (𝐹 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) → 𝐹:ℕ⟶(ℝ × ℝ))
1716adantr 480 . . . . . . . . 9 ((𝐹 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑘 ∈ ℕ) → 𝐹:ℕ⟶(ℝ × ℝ))
18 simpr 476 . . . . . . . . 9 ((𝐹 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
1917, 18fvovco 38376 . . . . . . . 8 ((𝐹 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑘 ∈ ℕ) → (([,) ∘ 𝐹)‘𝑘) = ((1st ‘(𝐹𝑘))[,)(2nd ‘(𝐹𝑘))))
2019fveq2d 6107 . . . . . . 7 ((𝐹 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑘 ∈ ℕ) → (vol‘(([,) ∘ 𝐹)‘𝑘)) = (vol‘((1st ‘(𝐹𝑘))[,)(2nd ‘(𝐹𝑘)))))
2116ffvelrnda 6267 . . . . . . . . 9 ((𝐹 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ (ℝ × ℝ))
22 xp1st 7089 . . . . . . . . 9 ((𝐹𝑘) ∈ (ℝ × ℝ) → (1st ‘(𝐹𝑘)) ∈ ℝ)
2321, 22syl 17 . . . . . . . 8 ((𝐹 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑘 ∈ ℕ) → (1st ‘(𝐹𝑘)) ∈ ℝ)
24 xp2nd 7090 . . . . . . . . 9 ((𝐹𝑘) ∈ (ℝ × ℝ) → (2nd ‘(𝐹𝑘)) ∈ ℝ)
2521, 24syl 17 . . . . . . . 8 ((𝐹 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑘 ∈ ℕ) → (2nd ‘(𝐹𝑘)) ∈ ℝ)
26 volicore 39471 . . . . . . . 8 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ) → (vol‘((1st ‘(𝐹𝑘))[,)(2nd ‘(𝐹𝑘)))) ∈ ℝ)
2723, 25, 26syl2anc 691 . . . . . . 7 ((𝐹 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑘 ∈ ℕ) → (vol‘((1st ‘(𝐹𝑘))[,)(2nd ‘(𝐹𝑘)))) ∈ ℝ)
2820, 27eqeltrd 2688 . . . . . 6 ((𝐹 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑘 ∈ ℕ) → (vol‘(([,) ∘ 𝐹)‘𝑘)) ∈ ℝ)
2928recnd 9947 . . . . 5 ((𝐹 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑘 ∈ ℕ) → (vol‘(([,) ∘ 𝐹)‘𝑘)) ∈ ℂ)
30 eqid 2610 . . . . 5 (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(vol‘(([,) ∘ 𝐹)‘𝑘))) = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(vol‘(([,) ∘ 𝐹)‘𝑘)))
31 eqid 2610 . . . . 5 seq1( + , (𝑘 ∈ ℕ ↦ (vol‘(([,) ∘ 𝐹)‘𝑘)))) = seq1( + , (𝑘 ∈ ℕ ↦ (vol‘(([,) ∘ 𝐹)‘𝑘))))
3214, 15, 29, 30, 31fsumsermpt 38646 . . . 4 (𝐹 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) → (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(vol‘(([,) ∘ 𝐹)‘𝑘))) = seq1( + , (𝑘 ∈ ℕ ↦ (vol‘(([,) ∘ 𝐹)‘𝑘)))))
3313, 32syl 17 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(vol‘(([,) ∘ 𝐹)‘𝑘))) = seq1( + , (𝑘 ∈ ℕ ↦ (vol‘(([,) ∘ 𝐹)‘𝑘)))))
34 simpr 476 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)))
3534iftrued 4044 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → if((1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)), ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))), 0) = ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))))
3613, 23sylan 487 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (1st ‘(𝐹𝑘)) ∈ ℝ)
3736adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → (1st ‘(𝐹𝑘)) ∈ ℝ)
3813, 25sylan 487 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (2nd ‘(𝐹𝑘)) ∈ ℝ)
3938adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → (2nd ‘(𝐹𝑘)) ∈ ℝ)
40 ressxr 9962 . . . . . . . . . . . 12 ℝ ⊆ ℝ*
4140, 37sseldi 3566 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → (1st ‘(𝐹𝑘)) ∈ ℝ*)
4240, 39sseldi 3566 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → (2nd ‘(𝐹𝑘)) ∈ ℝ*)
43 xpss 5149 . . . . . . . . . . . . . . . . . 18 (ℝ × ℝ) ⊆ (V × V)
4443, 21sseldi 3566 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ (V × V))
45 1st2ndb 7097 . . . . . . . . . . . . . . . . 17 ((𝐹𝑘) ∈ (V × V) ↔ (𝐹𝑘) = ⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩)
4644, 45sylib 207 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = ⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩)
4713, 46sylan 487 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = ⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩)
4847eqcomd 2616 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → ⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩ = (𝐹𝑘))
49 inss1 3795 . . . . . . . . . . . . . . . . 17 ( ≤ ∩ (ℝ × ℝ)) ⊆ ≤
5049a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → ( ≤ ∩ (ℝ × ℝ)) ⊆ ≤ )
516, 50fssd 5970 . . . . . . . . . . . . . . 15 (𝜑𝐹:ℕ⟶ ≤ )
5251ffvelrnda 6267 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ≤ )
5348, 52eqeltrd 2688 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → ⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩ ∈ ≤ )
54 df-br 4584 . . . . . . . . . . . . 13 ((1st ‘(𝐹𝑘)) ≤ (2nd ‘(𝐹𝑘)) ↔ ⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩ ∈ ≤ )
5553, 54sylibr 223 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (1st ‘(𝐹𝑘)) ≤ (2nd ‘(𝐹𝑘)))
5655adantr 480 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → (1st ‘(𝐹𝑘)) ≤ (2nd ‘(𝐹𝑘)))
57 simpr 476 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)))
5839, 37lenltd 10062 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → ((2nd ‘(𝐹𝑘)) ≤ (1st ‘(𝐹𝑘)) ↔ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))))
5957, 58mpbird 246 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → (2nd ‘(𝐹𝑘)) ≤ (1st ‘(𝐹𝑘)))
6041, 42, 56, 59xrletrid 11862 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘)))
61 simp3 1056 . . . . . . . . . . . . . 14 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘)))
62 simp1 1054 . . . . . . . . . . . . . . 15 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → (1st ‘(𝐹𝑘)) ∈ ℝ)
63 simp2 1055 . . . . . . . . . . . . . . 15 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → (2nd ‘(𝐹𝑘)) ∈ ℝ)
6462, 63eqleltd 10060 . . . . . . . . . . . . . 14 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → ((1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘)) ↔ ((1st ‘(𝐹𝑘)) ≤ (2nd ‘(𝐹𝑘)) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)))))
6561, 64mpbid 221 . . . . . . . . . . . . 13 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → ((1st ‘(𝐹𝑘)) ≤ (2nd ‘(𝐹𝑘)) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))))
6665simprd 478 . . . . . . . . . . . 12 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)))
6766iffalsed 4047 . . . . . . . . . . 11 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → if((1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)), ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))), 0) = 0)
6863recnd 9947 . . . . . . . . . . . 12 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → (2nd ‘(𝐹𝑘)) ∈ ℂ)
6961eqcomd 2616 . . . . . . . . . . . 12 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → (2nd ‘(𝐹𝑘)) = (1st ‘(𝐹𝑘)))
7068, 69subeq0bd 10335 . . . . . . . . . . 11 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))) = 0)
7167, 70eqtr4d 2647 . . . . . . . . . 10 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → if((1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)), ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))), 0) = ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))))
7237, 39, 60, 71syl3anc 1318 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → if((1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)), ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))), 0) = ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))))
7335, 72pm2.61dan 828 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → if((1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)), ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))), 0) = ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))))
74 volico 38876 . . . . . . . . 9 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ) → (vol‘((1st ‘(𝐹𝑘))[,)(2nd ‘(𝐹𝑘)))) = if((1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)), ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))), 0))
7536, 38, 74syl2anc 691 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (vol‘((1st ‘(𝐹𝑘))[,)(2nd ‘(𝐹𝑘)))) = if((1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)), ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))), 0))
7636, 38, 55abssuble0d 14019 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (abs‘((1st ‘(𝐹𝑘)) − (2nd ‘(𝐹𝑘)))) = ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))))
7773, 75, 763eqtr4d 2654 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (vol‘((1st ‘(𝐹𝑘))[,)(2nd ‘(𝐹𝑘)))) = (abs‘((1st ‘(𝐹𝑘)) − (2nd ‘(𝐹𝑘)))))
7813adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐹 ∈ ((ℝ × ℝ) ↑𝑚 ℕ))
79 simpr 476 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
8078, 79, 20syl2anc 691 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (vol‘(([,) ∘ 𝐹)‘𝑘)) = (vol‘((1st ‘(𝐹𝑘))[,)(2nd ‘(𝐹𝑘)))))
8146fveq2d 6107 . . . . . . . . 9 ((𝐹 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑘 ∈ ℕ) → ((abs ∘ − )‘(𝐹𝑘)) = ((abs ∘ − )‘⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩))
82 df-ov 6552 . . . . . . . . . . 11 ((1st ‘(𝐹𝑘))(abs ∘ − )(2nd ‘(𝐹𝑘))) = ((abs ∘ − )‘⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩)
8382eqcomi 2619 . . . . . . . . . 10 ((abs ∘ − )‘⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩) = ((1st ‘(𝐹𝑘))(abs ∘ − )(2nd ‘(𝐹𝑘)))
8483a1i 11 . . . . . . . . 9 ((𝐹 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑘 ∈ ℕ) → ((abs ∘ − )‘⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩) = ((1st ‘(𝐹𝑘))(abs ∘ − )(2nd ‘(𝐹𝑘))))
8523recnd 9947 . . . . . . . . . 10 ((𝐹 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑘 ∈ ℕ) → (1st ‘(𝐹𝑘)) ∈ ℂ)
8625recnd 9947 . . . . . . . . . 10 ((𝐹 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑘 ∈ ℕ) → (2nd ‘(𝐹𝑘)) ∈ ℂ)
87 eqid 2610 . . . . . . . . . . 11 (abs ∘ − ) = (abs ∘ − )
8887cnmetdval 22384 . . . . . . . . . 10 (((1st ‘(𝐹𝑘)) ∈ ℂ ∧ (2nd ‘(𝐹𝑘)) ∈ ℂ) → ((1st ‘(𝐹𝑘))(abs ∘ − )(2nd ‘(𝐹𝑘))) = (abs‘((1st ‘(𝐹𝑘)) − (2nd ‘(𝐹𝑘)))))
8985, 86, 88syl2anc 691 . . . . . . . . 9 ((𝐹 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑘 ∈ ℕ) → ((1st ‘(𝐹𝑘))(abs ∘ − )(2nd ‘(𝐹𝑘))) = (abs‘((1st ‘(𝐹𝑘)) − (2nd ‘(𝐹𝑘)))))
9081, 84, 893eqtrd 2648 . . . . . . . 8 ((𝐹 ∈ ((ℝ × ℝ) ↑𝑚 ℕ) ∧ 𝑘 ∈ ℕ) → ((abs ∘ − )‘(𝐹𝑘)) = (abs‘((1st ‘(𝐹𝑘)) − (2nd ‘(𝐹𝑘)))))
9178, 79, 90syl2anc 691 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((abs ∘ − )‘(𝐹𝑘)) = (abs‘((1st ‘(𝐹𝑘)) − (2nd ‘(𝐹𝑘)))))
9277, 80, 913eqtr4d 2654 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (vol‘(([,) ∘ 𝐹)‘𝑘)) = ((abs ∘ − )‘(𝐹𝑘)))
9392mpteq2dva 4672 . . . . 5 (𝜑 → (𝑘 ∈ ℕ ↦ (vol‘(([,) ∘ 𝐹)‘𝑘))) = (𝑘 ∈ ℕ ↦ ((abs ∘ − )‘(𝐹𝑘))))
9413, 16syl 17 . . . . . 6 (𝜑𝐹:ℕ⟶(ℝ × ℝ))
95 rr2sscn2 38523 . . . . . . 7 (ℝ × ℝ) ⊆ (ℂ × ℂ)
9695a1i 11 . . . . . 6 (𝜑 → (ℝ × ℝ) ⊆ (ℂ × ℂ))
97 absf 13925 . . . . . . . 8 abs:ℂ⟶ℝ
98 subf 10162 . . . . . . . 8 − :(ℂ × ℂ)⟶ℂ
99 fco 5971 . . . . . . . 8 ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ)
10097, 98, 99mp2an 704 . . . . . . 7 (abs ∘ − ):(ℂ × ℂ)⟶ℝ
101100a1i 11 . . . . . 6 (𝜑 → (abs ∘ − ):(ℂ × ℂ)⟶ℝ)
10294, 96, 101fcomptss 38390 . . . . 5 (𝜑 → ((abs ∘ − ) ∘ 𝐹) = (𝑘 ∈ ℕ ↦ ((abs ∘ − )‘(𝐹𝑘))))
10393, 102eqtr4d 2647 . . . 4 (𝜑 → (𝑘 ∈ ℕ ↦ (vol‘(([,) ∘ 𝐹)‘𝑘))) = ((abs ∘ − ) ∘ 𝐹))
104103seqeq3d 12671 . . 3 (𝜑 → seq1( + , (𝑘 ∈ ℕ ↦ (vol‘(([,) ∘ 𝐹)‘𝑘)))) = seq1( + , ((abs ∘ − ) ∘ 𝐹)))
10533, 104eqtr2d 2645 . 2 (𝜑 → seq1( + , ((abs ∘ − ) ∘ 𝐹)) = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(vol‘(([,) ∘ 𝐹)‘𝑘))))
106105rneqd 5274 1 (𝜑 → ran seq1( + , ((abs ∘ − ) ∘ 𝐹)) = ran (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(vol‘(([,) ∘ 𝐹)‘𝑘))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  Vcvv 3173  cin 3539  wss 3540  ifcif 4036  cop 4131   class class class wbr 4583  cmpt 4643   × cxp 5036  ran crn 5039  ccom 5042  wf 5800  cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  𝑚 cmap 7744  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818  *cxr 9952   < clt 9953  cle 9954  cmin 10145  cn 10897  [,)cico 12048  ...cfz 12197  seqcseq 12663  abscabs 13822  Σcsu 14264  volcvol 23039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-rest 15906  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cmp 21000  df-ovol 23040  df-vol 23041
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator