MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolicc2 Structured version   Visualization version   GIF version

Theorem ovolicc2 23097
Description: The measure of a closed interval is upper bounded by its length. (Contributed by Mario Carneiro, 14-Jun-2014.)
Hypotheses
Ref Expression
ovolicc.1 (𝜑𝐴 ∈ ℝ)
ovolicc.2 (𝜑𝐵 ∈ ℝ)
ovolicc.3 (𝜑𝐴𝐵)
ovolicc2.m 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
Assertion
Ref Expression
ovolicc2 (𝜑 → (𝐵𝐴) ≤ (vol*‘(𝐴[,]𝐵)))
Distinct variable groups:   𝑦,𝑓,𝐴   𝐵,𝑓,𝑦   𝑦,𝑀   𝜑,𝑓,𝑦
Allowed substitution hint:   𝑀(𝑓)

Proof of Theorem ovolicc2
Dummy variables 𝑔 𝑘 𝑡 𝑢 𝑣 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolicc2.m . . . . . 6 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
21elovolm 23050 . . . . 5 (𝑧𝑀 ↔ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
3 ioof 12142 . . . . . . . . . . . . . . . . . 18 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
4 ffn 5958 . . . . . . . . . . . . . . . . . 18 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
53, 4ax-mp 5 . . . . . . . . . . . . . . . . 17 (,) Fn (ℝ* × ℝ*)
6 dffn3 5967 . . . . . . . . . . . . . . . . 17 ((,) Fn (ℝ* × ℝ*) ↔ (,):(ℝ* × ℝ*)⟶ran (,))
75, 6mpbi 219 . . . . . . . . . . . . . . . 16 (,):(ℝ* × ℝ*)⟶ran (,)
8 simpr 476 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) → 𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ))
9 reex 9906 . . . . . . . . . . . . . . . . . . . . 21 ℝ ∈ V
109, 9xpex 6860 . . . . . . . . . . . . . . . . . . . 20 (ℝ × ℝ) ∈ V
1110inex2 4728 . . . . . . . . . . . . . . . . . . 19 ( ≤ ∩ (ℝ × ℝ)) ∈ V
12 nnex 10903 . . . . . . . . . . . . . . . . . . 19 ℕ ∈ V
1311, 12elmap 7772 . . . . . . . . . . . . . . . . . 18 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ↔ 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
148, 13sylib 207 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
15 inss2 3796 . . . . . . . . . . . . . . . . . 18 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
16 rexpssxrxp 9963 . . . . . . . . . . . . . . . . . 18 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
1715, 16sstri 3577 . . . . . . . . . . . . . . . . 17 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
18 fss 5969 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝑓:ℕ⟶(ℝ* × ℝ*))
1914, 17, 18sylancl 693 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) → 𝑓:ℕ⟶(ℝ* × ℝ*))
20 fco 5971 . . . . . . . . . . . . . . . 16 (((,):(ℝ* × ℝ*)⟶ran (,) ∧ 𝑓:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝑓):ℕ⟶ran (,))
217, 19, 20sylancr 694 . . . . . . . . . . . . . . 15 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) → ((,) ∘ 𝑓):ℕ⟶ran (,))
2221adantrr 749 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → ((,) ∘ 𝑓):ℕ⟶ran (,))
23 frn 5966 . . . . . . . . . . . . . 14 (((,) ∘ 𝑓):ℕ⟶ran (,) → ran ((,) ∘ 𝑓) ⊆ ran (,))
2422, 23syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → ran ((,) ∘ 𝑓) ⊆ ran (,))
25 retopbas 22374 . . . . . . . . . . . . . 14 ran (,) ∈ TopBases
26 bastg 20581 . . . . . . . . . . . . . 14 (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,)))
2725, 26ax-mp 5 . . . . . . . . . . . . 13 ran (,) ⊆ (topGen‘ran (,))
2824, 27syl6ss 3580 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → ran ((,) ∘ 𝑓) ⊆ (topGen‘ran (,)))
29 fvex 6113 . . . . . . . . . . . . 13 (topGen‘ran (,)) ∈ V
3029elpw2 4755 . . . . . . . . . . . 12 (ran ((,) ∘ 𝑓) ∈ 𝒫 (topGen‘ran (,)) ↔ ran ((,) ∘ 𝑓) ⊆ (topGen‘ran (,)))
3128, 30sylibr 223 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → ran ((,) ∘ 𝑓) ∈ 𝒫 (topGen‘ran (,)))
32 ovolicc.1 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℝ)
33 ovolicc.2 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℝ)
34 eqid 2610 . . . . . . . . . . . . . . 15 (topGen‘ran (,)) = (topGen‘ran (,))
35 eqid 2610 . . . . . . . . . . . . . . 15 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))
3634, 35icccmp 22436 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Comp)
3732, 33, 36syl2anc 691 . . . . . . . . . . . . 13 (𝜑 → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Comp)
38 retop 22375 . . . . . . . . . . . . . 14 (topGen‘ran (,)) ∈ Top
39 iccssre 12126 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
4032, 33, 39syl2anc 691 . . . . . . . . . . . . . 14 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
41 uniretop 22376 . . . . . . . . . . . . . . 15 ℝ = (topGen‘ran (,))
4241cmpsub 21013 . . . . . . . . . . . . . 14 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) → (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 (topGen‘ran (,))((𝐴[,]𝐵) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣)))
4338, 40, 42sylancr 694 . . . . . . . . . . . . 13 (𝜑 → (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 (topGen‘ran (,))((𝐴[,]𝐵) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣)))
4437, 43mpbid 221 . . . . . . . . . . . 12 (𝜑 → ∀𝑢 ∈ 𝒫 (topGen‘ran (,))((𝐴[,]𝐵) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣))
4544adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → ∀𝑢 ∈ 𝒫 (topGen‘ran (,))((𝐴[,]𝐵) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣))
46 simprr 792 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))
47 unieq 4380 . . . . . . . . . . . . . 14 (𝑢 = ran ((,) ∘ 𝑓) → 𝑢 = ran ((,) ∘ 𝑓))
4847sseq2d 3596 . . . . . . . . . . . . 13 (𝑢 = ran ((,) ∘ 𝑓) → ((𝐴[,]𝐵) ⊆ 𝑢 ↔ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓)))
49 pweq 4111 . . . . . . . . . . . . . . 15 (𝑢 = ran ((,) ∘ 𝑓) → 𝒫 𝑢 = 𝒫 ran ((,) ∘ 𝑓))
5049ineq1d 3775 . . . . . . . . . . . . . 14 (𝑢 = ran ((,) ∘ 𝑓) → (𝒫 𝑢 ∩ Fin) = (𝒫 ran ((,) ∘ 𝑓) ∩ Fin))
5150rexeqdv 3122 . . . . . . . . . . . . 13 (𝑢 = ran ((,) ∘ 𝑓) → (∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣 ↔ ∃𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣))
5248, 51imbi12d 333 . . . . . . . . . . . 12 (𝑢 = ran ((,) ∘ 𝑓) → (((𝐴[,]𝐵) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣) ↔ ((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) → ∃𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣)))
5352rspcv 3278 . . . . . . . . . . 11 (ran ((,) ∘ 𝑓) ∈ 𝒫 (topGen‘ran (,)) → (∀𝑢 ∈ 𝒫 (topGen‘ran (,))((𝐴[,]𝐵) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣) → ((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) → ∃𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣)))
5431, 45, 46, 53syl3c 64 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → ∃𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣)
55 simprl 790 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → 𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin))
56 elin 3758 . . . . . . . . . . . . . . . 16 (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ↔ (𝑣 ∈ 𝒫 ran ((,) ∘ 𝑓) ∧ 𝑣 ∈ Fin))
5755, 56sylib 207 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → (𝑣 ∈ 𝒫 ran ((,) ∘ 𝑓) ∧ 𝑣 ∈ Fin))
5857simprd 478 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → 𝑣 ∈ Fin)
5957simpld 474 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → 𝑣 ∈ 𝒫 ran ((,) ∘ 𝑓))
6059elpwid 4118 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → 𝑣 ⊆ ran ((,) ∘ 𝑓))
6160sseld 3567 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → (𝑡𝑣𝑡 ∈ ran ((,) ∘ 𝑓)))
62 ffn 5958 . . . . . . . . . . . . . . . . . . 19 (((,) ∘ 𝑓):ℕ⟶ran (,) → ((,) ∘ 𝑓) Fn ℕ)
6321, 62syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) → ((,) ∘ 𝑓) Fn ℕ)
6463adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → ((,) ∘ 𝑓) Fn ℕ)
65 fvelrnb 6153 . . . . . . . . . . . . . . . . 17 (((,) ∘ 𝑓) Fn ℕ → (𝑡 ∈ ran ((,) ∘ 𝑓) ↔ ∃𝑘 ∈ ℕ (((,) ∘ 𝑓)‘𝑘) = 𝑡))
6664, 65syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → (𝑡 ∈ ran ((,) ∘ 𝑓) ↔ ∃𝑘 ∈ ℕ (((,) ∘ 𝑓)‘𝑘) = 𝑡))
6761, 66sylibd 228 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → (𝑡𝑣 → ∃𝑘 ∈ ℕ (((,) ∘ 𝑓)‘𝑘) = 𝑡))
6867ralrimiv 2948 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → ∀𝑡𝑣𝑘 ∈ ℕ (((,) ∘ 𝑓)‘𝑘) = 𝑡)
69 fveq2 6103 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑔𝑡) → (((,) ∘ 𝑓)‘𝑘) = (((,) ∘ 𝑓)‘(𝑔𝑡)))
7069eqeq1d 2612 . . . . . . . . . . . . . . 15 (𝑘 = (𝑔𝑡) → ((((,) ∘ 𝑓)‘𝑘) = 𝑡 ↔ (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))
7170ac6sfi 8089 . . . . . . . . . . . . . 14 ((𝑣 ∈ Fin ∧ ∀𝑡𝑣𝑘 ∈ ℕ (((,) ∘ 𝑓)‘𝑘) = 𝑡) → ∃𝑔(𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))
7258, 68, 71syl2anc 691 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → ∃𝑔(𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))
7332ad2antrr 758 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → 𝐴 ∈ ℝ)
7433ad2antrr 758 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → 𝐵 ∈ ℝ)
75 ovolicc.3 . . . . . . . . . . . . . . . . 17 (𝜑𝐴𝐵)
7675ad2antrr 758 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → 𝐴𝐵)
77 eqid 2610 . . . . . . . . . . . . . . . 16 seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))
7814adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
79 simprll 798 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → 𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin))
80 simprlr 799 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → (𝐴[,]𝐵) ⊆ 𝑣)
81 simprrl 800 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → 𝑔:𝑣⟶ℕ)
82 simprrr 801 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡)
83 fveq2 6103 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑥 → (𝑔𝑡) = (𝑔𝑥))
8483fveq2d 6107 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑥 → (((,) ∘ 𝑓)‘(𝑔𝑡)) = (((,) ∘ 𝑓)‘(𝑔𝑥)))
85 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑥𝑡 = 𝑥)
8684, 85eqeq12d 2625 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑥 → ((((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡 ↔ (((,) ∘ 𝑓)‘(𝑔𝑥)) = 𝑥))
8786rspccva 3281 . . . . . . . . . . . . . . . . 17 ((∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡𝑥𝑣) → (((,) ∘ 𝑓)‘(𝑔𝑥)) = 𝑥)
8882, 87sylan 487 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) ∧ 𝑥𝑣) → (((,) ∘ 𝑓)‘(𝑔𝑥)) = 𝑥)
89 eqid 2610 . . . . . . . . . . . . . . . 16 {𝑢𝑣 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅} = {𝑢𝑣 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅}
9073, 74, 76, 77, 78, 79, 80, 81, 88, 89ovolicc2lem5 23096 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → (𝐵𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
9190expr 641 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → ((𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡) → (𝐵𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
9291exlimdv 1848 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → (∃𝑔(𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡) → (𝐵𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
9372, 92mpd 15 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → (𝐵𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
9493rexlimdvaa 3014 . . . . . . . . . . 11 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) → (∃𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣 → (𝐵𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
9594adantrr 749 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → (∃𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣 → (𝐵𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
9654, 95mpd 15 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → (𝐵𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
97 breq2 4587 . . . . . . . . 9 (𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) → ((𝐵𝐴) ≤ 𝑧 ↔ (𝐵𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
9896, 97syl5ibrcom 236 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → (𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) → (𝐵𝐴) ≤ 𝑧))
9998expr 641 . . . . . . 7 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) → ((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) → (𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) → (𝐵𝐴) ≤ 𝑧)))
10099impd 446 . . . . . 6 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) → (((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → (𝐵𝐴) ≤ 𝑧))
101100rexlimdva 3013 . . . . 5 (𝜑 → (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → (𝐵𝐴) ≤ 𝑧))
1022, 101syl5bi 231 . . . 4 (𝜑 → (𝑧𝑀 → (𝐵𝐴) ≤ 𝑧))
103102ralrimiv 2948 . . 3 (𝜑 → ∀𝑧𝑀 (𝐵𝐴) ≤ 𝑧)
104 ssrab2 3650 . . . . 5 {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} ⊆ ℝ*
1051, 104eqsstri 3598 . . . 4 𝑀 ⊆ ℝ*
10633, 32resubcld 10337 . . . . 5 (𝜑 → (𝐵𝐴) ∈ ℝ)
107106rexrd 9968 . . . 4 (𝜑 → (𝐵𝐴) ∈ ℝ*)
108 infxrgelb 12037 . . . 4 ((𝑀 ⊆ ℝ* ∧ (𝐵𝐴) ∈ ℝ*) → ((𝐵𝐴) ≤ inf(𝑀, ℝ*, < ) ↔ ∀𝑧𝑀 (𝐵𝐴) ≤ 𝑧))
109105, 107, 108sylancr 694 . . 3 (𝜑 → ((𝐵𝐴) ≤ inf(𝑀, ℝ*, < ) ↔ ∀𝑧𝑀 (𝐵𝐴) ≤ 𝑧))
110103, 109mpbird 246 . 2 (𝜑 → (𝐵𝐴) ≤ inf(𝑀, ℝ*, < ))
1111ovolval 23049 . . 3 ((𝐴[,]𝐵) ⊆ ℝ → (vol*‘(𝐴[,]𝐵)) = inf(𝑀, ℝ*, < ))
11240, 111syl 17 . 2 (𝜑 → (vol*‘(𝐴[,]𝐵)) = inf(𝑀, ℝ*, < ))
113110, 112breqtrrd 4611 1 (𝜑 → (𝐵𝐴) ≤ (vol*‘(𝐴[,]𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  wne 2780  wral 2896  wrex 2897  {crab 2900  cin 3539  wss 3540  c0 3874  𝒫 cpw 4108   cuni 4372   class class class wbr 4583   × cxp 5036  ran crn 5039  ccom 5042   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  Fincfn 7841  supcsup 8229  infcinf 8230  cr 9814  1c1 9816   + caddc 9818  *cxr 9952   < clt 9953  cle 9954  cmin 10145  cn 10897  (,)cioo 12046  [,]cicc 12049  seqcseq 12663  abscabs 13822  t crest 15904  topGenctg 15921  Topctop 20517  TopBasesctb 20520  Compccmp 20999  vol*covol 23038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-rest 15906  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cmp 21000  df-ovol 23040
This theorem is referenced by:  ovolicc  23098
  Copyright terms: Public domain W3C validator