Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ovolf | Structured version Visualization version GIF version |
Description: The domain and range of the outer volume function. (Contributed by Mario Carneiro, 16-Mar-2014.) (Proof shortened by AV, 17-Sep-2020.) |
Ref | Expression |
---|---|
ovolf | ⊢ vol*:𝒫 ℝ⟶(0[,]+∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltso 11850 | . . . 4 ⊢ < Or ℝ* | |
2 | 1 | infex 8282 | . . 3 ⊢ inf({𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝑥 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}, ℝ*, < ) ∈ V |
3 | df-ovol 23040 | . . 3 ⊢ vol* = (𝑥 ∈ 𝒫 ℝ ↦ inf({𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝑥 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}, ℝ*, < )) | |
4 | 2, 3 | fnmpti 5935 | . 2 ⊢ vol* Fn 𝒫 ℝ |
5 | elpwi 4117 | . . . 4 ⊢ (𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ) | |
6 | ovolcl 23053 | . . . . 5 ⊢ (𝑥 ⊆ ℝ → (vol*‘𝑥) ∈ ℝ*) | |
7 | ovolge0 23056 | . . . . 5 ⊢ (𝑥 ⊆ ℝ → 0 ≤ (vol*‘𝑥)) | |
8 | pnfge 11840 | . . . . . 6 ⊢ ((vol*‘𝑥) ∈ ℝ* → (vol*‘𝑥) ≤ +∞) | |
9 | 6, 8 | syl 17 | . . . . 5 ⊢ (𝑥 ⊆ ℝ → (vol*‘𝑥) ≤ +∞) |
10 | 0xr 9965 | . . . . . 6 ⊢ 0 ∈ ℝ* | |
11 | pnfxr 9971 | . . . . . 6 ⊢ +∞ ∈ ℝ* | |
12 | elicc1 12090 | . . . . . 6 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((vol*‘𝑥) ∈ (0[,]+∞) ↔ ((vol*‘𝑥) ∈ ℝ* ∧ 0 ≤ (vol*‘𝑥) ∧ (vol*‘𝑥) ≤ +∞))) | |
13 | 10, 11, 12 | mp2an 704 | . . . . 5 ⊢ ((vol*‘𝑥) ∈ (0[,]+∞) ↔ ((vol*‘𝑥) ∈ ℝ* ∧ 0 ≤ (vol*‘𝑥) ∧ (vol*‘𝑥) ≤ +∞)) |
14 | 6, 7, 9, 13 | syl3anbrc 1239 | . . . 4 ⊢ (𝑥 ⊆ ℝ → (vol*‘𝑥) ∈ (0[,]+∞)) |
15 | 5, 14 | syl 17 | . . 3 ⊢ (𝑥 ∈ 𝒫 ℝ → (vol*‘𝑥) ∈ (0[,]+∞)) |
16 | 15 | rgen 2906 | . 2 ⊢ ∀𝑥 ∈ 𝒫 ℝ(vol*‘𝑥) ∈ (0[,]+∞) |
17 | ffnfv 6295 | . 2 ⊢ (vol*:𝒫 ℝ⟶(0[,]+∞) ↔ (vol* Fn 𝒫 ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ(vol*‘𝑥) ∈ (0[,]+∞))) | |
18 | 4, 16, 17 | mpbir2an 957 | 1 ⊢ vol*:𝒫 ℝ⟶(0[,]+∞) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ∀wral 2896 ∃wrex 2897 {crab 2900 ∩ cin 3539 ⊆ wss 3540 𝒫 cpw 4108 ∪ cuni 4372 class class class wbr 4583 × cxp 5036 ran crn 5039 ∘ ccom 5042 Fn wfn 5799 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 ↑𝑚 cmap 7744 supcsup 8229 infcinf 8230 ℝcr 9814 0cc0 9815 1c1 9816 + caddc 9818 +∞cpnf 9950 ℝ*cxr 9952 < clt 9953 ≤ cle 9954 − cmin 10145 ℕcn 10897 (,)cioo 12046 [,]cicc 12049 seqcseq 12663 abscabs 13822 vol*covol 23038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-map 7746 df-en 7842 df-dom 7843 df-sdom 7844 df-sup 8231 df-inf 8232 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-n0 11170 df-z 11255 df-uz 11564 df-rp 11709 df-ico 12052 df-icc 12053 df-fz 12198 df-seq 12664 df-exp 12723 df-cj 13687 df-re 13688 df-im 13689 df-sqrt 13823 df-abs 13824 df-ovol 23040 |
This theorem is referenced by: ismbl 23101 volf 23104 ovolfs2 23145 ismbl3 38879 ovolsplit 38881 |
Copyright terms: Public domain | W3C validator |