Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnssle Structured version   Visualization version   GIF version

Theorem ovnssle 39451
 Description: The (multidimensional) Lebesgue outer measure of a subset is less than the L.o.m. of the whole set. This is step (iii) of the proof of Proposition 115D (a) of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
ovnssle.1 (𝜑𝑋 ∈ Fin)
ovnssle.2 (𝜑𝐴𝐵)
ovnssle.3 (𝜑𝐵 ⊆ (ℝ ↑𝑚 𝑋))
Assertion
Ref Expression
ovnssle (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵))

Proof of Theorem ovnssle
Dummy variables 𝑖 𝑧 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0le0 10987 . . . 4 0 ≤ 0
21a1i 11 . . 3 ((𝜑𝑋 = ∅) → 0 ≤ 0)
3 fveq2 6103 . . . . . . 7 (𝑋 = ∅ → (voln*‘𝑋) = (voln*‘∅))
43fveq1d 6105 . . . . . 6 (𝑋 = ∅ → ((voln*‘𝑋)‘𝐴) = ((voln*‘∅)‘𝐴))
54adantl 481 . . . . 5 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) = ((voln*‘∅)‘𝐴))
6 ovnssle.2 . . . . . . . 8 (𝜑𝐴𝐵)
76adantr 480 . . . . . . 7 ((𝜑𝑋 = ∅) → 𝐴𝐵)
8 ovnssle.3 . . . . . . . . 9 (𝜑𝐵 ⊆ (ℝ ↑𝑚 𝑋))
98adantr 480 . . . . . . . 8 ((𝜑𝑋 = ∅) → 𝐵 ⊆ (ℝ ↑𝑚 𝑋))
10 simpr 476 . . . . . . . . 9 ((𝜑𝑋 = ∅) → 𝑋 = ∅)
1110oveq2d 6565 . . . . . . . 8 ((𝜑𝑋 = ∅) → (ℝ ↑𝑚 𝑋) = (ℝ ↑𝑚 ∅))
129, 11sseqtrd 3604 . . . . . . 7 ((𝜑𝑋 = ∅) → 𝐵 ⊆ (ℝ ↑𝑚 ∅))
137, 12sstrd 3578 . . . . . 6 ((𝜑𝑋 = ∅) → 𝐴 ⊆ (ℝ ↑𝑚 ∅))
1413ovn0val 39440 . . . . 5 ((𝜑𝑋 = ∅) → ((voln*‘∅)‘𝐴) = 0)
155, 14eqtrd 2644 . . . 4 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) = 0)
163fveq1d 6105 . . . . . 6 (𝑋 = ∅ → ((voln*‘𝑋)‘𝐵) = ((voln*‘∅)‘𝐵))
1716adantl 481 . . . . 5 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐵) = ((voln*‘∅)‘𝐵))
1812ovn0val 39440 . . . . 5 ((𝜑𝑋 = ∅) → ((voln*‘∅)‘𝐵) = 0)
1917, 18eqtrd 2644 . . . 4 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐵) = 0)
2015, 19breq12d 4596 . . 3 ((𝜑𝑋 = ∅) → (((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵) ↔ 0 ≤ 0))
212, 20mpbird 246 . 2 ((𝜑𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵))
22 ovnssle.1 . . . 4 (𝜑𝑋 ∈ Fin)
2322adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ∈ Fin)
24 neqne 2790 . . . 4 𝑋 = ∅ → 𝑋 ≠ ∅)
2524adantl 481 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
266adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐴𝐵)
278adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝐵 ⊆ (ℝ ↑𝑚 𝑋))
28 eqid 2610 . . 3 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
29 eqid 2610 . . 3 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐵 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐵 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
3023, 25, 26, 27, 28, 29ovnsslelem 39450 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵))
3121, 30pm2.61dan 828 1 (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ ((voln*‘𝑋)‘𝐵))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∃wrex 2897  {crab 2900   ⊆ wss 3540  ∅c0 3874  ∪ ciun 4455   class class class wbr 4583   ↦ cmpt 4643   × cxp 5036   ∘ ccom 5042  ‘cfv 5804  (class class class)co 6549   ↑𝑚 cmap 7744  Xcixp 7794  Fincfn 7841  ℝcr 9814  0cc0 9815  ℝ*cxr 9952   ≤ cle 9954  ℕcn 10897  [,)cico 12048  ∏cprod 14474  volcvol 23039  Σ^csumge0 39255  voln*covoln 39426 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-seq 12664  df-prod 14475  df-ovoln 39427 This theorem is referenced by:  ovnome  39463  hspmbllem3  39518
 Copyright terms: Public domain W3C validator