Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ovmpt2dv2 | Structured version Visualization version GIF version |
Description: Alternate deduction version of ovmpt2 6694, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.) |
Ref | Expression |
---|---|
ovmpt2dv2.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
ovmpt2dv2.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝐷) |
ovmpt2dv2.3 | ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 ∈ 𝑉) |
ovmpt2dv2.4 | ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆) |
Ref | Expression |
---|---|
ovmpt2dv2 | ⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) → (𝐴𝐹𝐵) = 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2611 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)) | |
2 | ovmpt2dv2.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
3 | ovmpt2dv2.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝐷) | |
4 | ovmpt2dv2.3 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 ∈ 𝑉) | |
5 | ovmpt2dv2.4 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆) | |
6 | 5 | eqeq2d 2620 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → ((𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) = 𝑅 ↔ (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) = 𝑆)) |
7 | 6 | biimpd 218 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → ((𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) = 𝑅 → (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) = 𝑆)) |
8 | nfmpt21 6620 | . . . 4 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
9 | nfcv 2751 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
10 | nfcv 2751 | . . . . . 6 ⊢ Ⅎ𝑥𝐵 | |
11 | 9, 8, 10 | nfov 6575 | . . . . 5 ⊢ Ⅎ𝑥(𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) |
12 | 11 | nfeq1 2764 | . . . 4 ⊢ Ⅎ𝑥(𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) = 𝑆 |
13 | nfmpt22 6621 | . . . 4 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
14 | nfcv 2751 | . . . . . 6 ⊢ Ⅎ𝑦𝐴 | |
15 | nfcv 2751 | . . . . . 6 ⊢ Ⅎ𝑦𝐵 | |
16 | 14, 13, 15 | nfov 6575 | . . . . 5 ⊢ Ⅎ𝑦(𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) |
17 | 16 | nfeq1 2764 | . . . 4 ⊢ Ⅎ𝑦(𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) = 𝑆 |
18 | 2, 3, 4, 7, 8, 12, 13, 17 | ovmpt2df 6690 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) → (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) = 𝑆)) |
19 | 1, 18 | mpd 15 | . 2 ⊢ (𝜑 → (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) = 𝑆) |
20 | oveq 6555 | . . 3 ⊢ (𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) → (𝐴𝐹𝐵) = (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵)) | |
21 | 20 | eqeq1d 2612 | . 2 ⊢ (𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) → ((𝐴𝐹𝐵) = 𝑆 ↔ (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) = 𝑆)) |
22 | 19, 21 | syl5ibrcom 236 | 1 ⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) → (𝐴𝐹𝐵) = 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 (class class class)co 6549 ↦ cmpt2 6551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-iota 5768 df-fun 5806 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 |
This theorem is referenced by: coaval 16541 xpcco 16646 marrepval 20187 marrepeval 20188 marepveval 20193 submaval 20206 submaeval 20207 minmar1val 20273 minmar1eval 20274 nbgraop 25952 isuvtx 26016 nbgrval 40560 |
Copyright terms: Public domain | W3C validator |