MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovig Structured version   Visualization version   GIF version

Theorem ovig 6680
Description: The value of an operation class abstraction (weak version). (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Contributed by NM, 14-Sep-1999.) (Revised by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
ovig.1 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))
ovig.2 ((𝑥𝑅𝑦𝑆) → ∃*𝑧𝜑)
ovig.3 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}
Assertion
Ref Expression
ovig ((𝐴𝑅𝐵𝑆𝐶𝐷) → (𝜓 → (𝐴𝐹𝐵) = 𝐶))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜓,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐷(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem ovig
StepHypRef Expression
1 3simpa 1051 . 2 ((𝐴𝑅𝐵𝑆𝐶𝐷) → (𝐴𝑅𝐵𝑆))
2 eleq1 2676 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑅𝐴𝑅))
3 eleq1 2676 . . . . . 6 (𝑦 = 𝐵 → (𝑦𝑆𝐵𝑆))
42, 3bi2anan9 913 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥𝑅𝑦𝑆) ↔ (𝐴𝑅𝐵𝑆)))
543adant3 1074 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → ((𝑥𝑅𝑦𝑆) ↔ (𝐴𝑅𝐵𝑆)))
6 ovig.1 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))
75, 6anbi12d 743 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (((𝑥𝑅𝑦𝑆) ∧ 𝜑) ↔ ((𝐴𝑅𝐵𝑆) ∧ 𝜓)))
8 ovig.2 . . . 4 ((𝑥𝑅𝑦𝑆) → ∃*𝑧𝜑)
9 moanimv 2519 . . . 4 (∃*𝑧((𝑥𝑅𝑦𝑆) ∧ 𝜑) ↔ ((𝑥𝑅𝑦𝑆) → ∃*𝑧𝜑))
108, 9mpbir 220 . . 3 ∃*𝑧((𝑥𝑅𝑦𝑆) ∧ 𝜑)
11 ovig.3 . . 3 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}
127, 10, 11ovigg 6679 . 2 ((𝐴𝑅𝐵𝑆𝐶𝐷) → (((𝐴𝑅𝐵𝑆) ∧ 𝜓) → (𝐴𝐹𝐵) = 𝐶))
131, 12mpand 707 1 ((𝐴𝑅𝐵𝑆𝐶𝐷) → (𝜓 → (𝐴𝐹𝐵) = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  ∃*wmo 2459  (class class class)co 6549  {coprab 6550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-oprab 6553
This theorem is referenced by:  addsrpr  9775  mulsrpr  9776
  Copyright terms: Public domain W3C validator