Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovg Structured version   Visualization version   GIF version

Theorem ovg 6697
 Description: The value of an operation class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
ovg.1 (𝑥 = 𝐴 → (𝜑𝜓))
ovg.2 (𝑦 = 𝐵 → (𝜓𝜒))
ovg.3 (𝑧 = 𝐶 → (𝜒𝜃))
ovg.4 ((𝜏 ∧ (𝑥𝑅𝑦𝑆)) → ∃!𝑧𝜑)
ovg.5 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}
Assertion
Ref Expression
ovg ((𝜏 ∧ (𝐴𝑅𝐵𝑆𝐶𝐷)) → ((𝐴𝐹𝐵) = 𝐶𝜃))
Distinct variable groups:   𝜓,𝑥   𝜒,𝑥,𝑦   𝜃,𝑥,𝑦,𝑧   𝜏,𝑥,𝑦   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑦,𝑧)   𝜒(𝑧)   𝜏(𝑧)   𝐷(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem ovg
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 df-ov 6552 . . . . 5 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 ovg.5 . . . . . 6 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}
32fveq1i 6104 . . . . 5 (𝐹‘⟨𝐴, 𝐵⟩) = ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩)
41, 3eqtri 2632 . . . 4 (𝐴𝐹𝐵) = ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩)
54eqeq1i 2615 . . 3 ((𝐴𝐹𝐵) = 𝐶 ↔ ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶)
6 eqeq2 2621 . . . . . . . . . 10 (𝑐 = 𝐶 → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝑐 ↔ ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶))
7 opeq2 4341 . . . . . . . . . . 11 (𝑐 = 𝐶 → ⟨⟨𝐴, 𝐵⟩, 𝑐⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩)
87eleq1d 2672 . . . . . . . . . 10 (𝑐 = 𝐶 → (⟨⟨𝐴, 𝐵⟩, 𝑐⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)} ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}))
96, 8bibi12d 334 . . . . . . . . 9 (𝑐 = 𝐶 → ((({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝑐 ↔ ⟨⟨𝐴, 𝐵⟩, 𝑐⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}) ↔ (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)})))
109imbi2d 329 . . . . . . . 8 (𝑐 = 𝐶 → (((𝜏 ∧ (𝐴𝑅𝐵𝑆)) → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝑐 ↔ ⟨⟨𝐴, 𝐵⟩, 𝑐⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)})) ↔ ((𝜏 ∧ (𝐴𝑅𝐵𝑆)) → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}))))
11 ovg.4 . . . . . . . . . . . 12 ((𝜏 ∧ (𝑥𝑅𝑦𝑆)) → ∃!𝑧𝜑)
1211ex 449 . . . . . . . . . . 11 (𝜏 → ((𝑥𝑅𝑦𝑆) → ∃!𝑧𝜑))
1312alrimivv 1843 . . . . . . . . . 10 (𝜏 → ∀𝑥𝑦((𝑥𝑅𝑦𝑆) → ∃!𝑧𝜑))
14 fnoprabg 6659 . . . . . . . . . 10 (∀𝑥𝑦((𝑥𝑅𝑦𝑆) → ∃!𝑧𝜑) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)} Fn {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)})
1513, 14syl 17 . . . . . . . . 9 (𝜏 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)} Fn {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)})
16 eleq1 2676 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (𝑥𝑅𝐴𝑅))
1716anbi1d 737 . . . . . . . . . . 11 (𝑥 = 𝐴 → ((𝑥𝑅𝑦𝑆) ↔ (𝐴𝑅𝑦𝑆)))
18 eleq1 2676 . . . . . . . . . . . 12 (𝑦 = 𝐵 → (𝑦𝑆𝐵𝑆))
1918anbi2d 736 . . . . . . . . . . 11 (𝑦 = 𝐵 → ((𝐴𝑅𝑦𝑆) ↔ (𝐴𝑅𝐵𝑆)))
2017, 19opelopabg 4918 . . . . . . . . . 10 ((𝐴𝑅𝐵𝑆) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)} ↔ (𝐴𝑅𝐵𝑆)))
2120ibir 256 . . . . . . . . 9 ((𝐴𝑅𝐵𝑆) → ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)})
22 fnopfvb 6147 . . . . . . . . 9 (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)} Fn {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)} ∧ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)}) → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝑐 ↔ ⟨⟨𝐴, 𝐵⟩, 𝑐⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}))
2315, 21, 22syl2an 493 . . . . . . . 8 ((𝜏 ∧ (𝐴𝑅𝐵𝑆)) → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝑐 ↔ ⟨⟨𝐴, 𝐵⟩, 𝑐⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}))
2410, 23vtoclg 3239 . . . . . . 7 (𝐶𝐷 → ((𝜏 ∧ (𝐴𝑅𝐵𝑆)) → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)})))
2524com12 32 . . . . . 6 ((𝜏 ∧ (𝐴𝑅𝐵𝑆)) → (𝐶𝐷 → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)})))
2625exp32 629 . . . . 5 (𝜏 → (𝐴𝑅 → (𝐵𝑆 → (𝐶𝐷 → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)})))))
27263imp2 1274 . . . 4 ((𝜏 ∧ (𝐴𝑅𝐵𝑆𝐶𝐷)) → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}))
28 ovg.1 . . . . . . 7 (𝑥 = 𝐴 → (𝜑𝜓))
2917, 28anbi12d 743 . . . . . 6 (𝑥 = 𝐴 → (((𝑥𝑅𝑦𝑆) ∧ 𝜑) ↔ ((𝐴𝑅𝑦𝑆) ∧ 𝜓)))
30 ovg.2 . . . . . . 7 (𝑦 = 𝐵 → (𝜓𝜒))
3119, 30anbi12d 743 . . . . . 6 (𝑦 = 𝐵 → (((𝐴𝑅𝑦𝑆) ∧ 𝜓) ↔ ((𝐴𝑅𝐵𝑆) ∧ 𝜒)))
32 ovg.3 . . . . . . 7 (𝑧 = 𝐶 → (𝜒𝜃))
3332anbi2d 736 . . . . . 6 (𝑧 = 𝐶 → (((𝐴𝑅𝐵𝑆) ∧ 𝜒) ↔ ((𝐴𝑅𝐵𝑆) ∧ 𝜃)))
3429, 31, 33eloprabg 6646 . . . . 5 ((𝐴𝑅𝐵𝑆𝐶𝐷) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)} ↔ ((𝐴𝑅𝐵𝑆) ∧ 𝜃)))
3534adantl 481 . . . 4 ((𝜏 ∧ (𝐴𝑅𝐵𝑆𝐶𝐷)) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)} ↔ ((𝐴𝑅𝐵𝑆) ∧ 𝜃)))
3627, 35bitrd 267 . . 3 ((𝜏 ∧ (𝐴𝑅𝐵𝑆𝐶𝐷)) → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ((𝐴𝑅𝐵𝑆) ∧ 𝜃)))
375, 36syl5bb 271 . 2 ((𝜏 ∧ (𝐴𝑅𝐵𝑆𝐶𝐷)) → ((𝐴𝐹𝐵) = 𝐶 ↔ ((𝐴𝑅𝐵𝑆) ∧ 𝜃)))
38 biidd 251 . . . . 5 ((𝐴𝑅𝐵𝑆) → (((𝐴𝑅𝐵𝑆) ∧ 𝜃) ↔ ((𝐴𝑅𝐵𝑆) ∧ 𝜃)))
3938bianabs 920 . . . 4 ((𝐴𝑅𝐵𝑆) → (((𝐴𝑅𝐵𝑆) ∧ 𝜃) ↔ 𝜃))
40393adant3 1074 . . 3 ((𝐴𝑅𝐵𝑆𝐶𝐷) → (((𝐴𝑅𝐵𝑆) ∧ 𝜃) ↔ 𝜃))
4140adantl 481 . 2 ((𝜏 ∧ (𝐴𝑅𝐵𝑆𝐶𝐷)) → (((𝐴𝑅𝐵𝑆) ∧ 𝜃) ↔ 𝜃))
4237, 41bitrd 267 1 ((𝜏 ∧ (𝐴𝑅𝐵𝑆𝐶𝐷)) → ((𝐴𝐹𝐵) = 𝐶𝜃))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031  ∀wal 1473   = wceq 1475   ∈ wcel 1977  ∃!weu 2458  ⟨cop 4131  {copab 4642   Fn wfn 5799  ‘cfv 5804  (class class class)co 6549  {coprab 6550 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fn 5807  df-fv 5812  df-ov 6552  df-oprab 6553 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator