Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovexi Structured version   Visualization version   GIF version

Theorem ovexi 6578
 Description: The result of an operation is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
ovexi.1 𝐴 = (𝐵𝐹𝐶)
Assertion
Ref Expression
ovexi 𝐴 ∈ V

Proof of Theorem ovexi
StepHypRef Expression
1 ovexi.1 . 2 𝐴 = (𝐵𝐹𝐶)
2 ovex 6577 . 2 (𝐵𝐹𝐶) ∈ V
31, 2eqeltri 2684 1 𝐴 ∈ V
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475   ∈ wcel 1977  Vcvv 3173  (class class class)co 6549 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-nul 4717 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-sn 4126  df-pr 4128  df-uni 4373  df-iota 5768  df-fv 5812  df-ov 6552 This theorem is referenced by:  nghmfval  22336  konigsberg  26514  subsalsal  39253  konigsberglem5  41426  dpval  42310
 Copyright terms: Public domain W3C validator