MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  otiunsndisj Structured version   Visualization version   GIF version

Theorem otiunsndisj 4905
Description: The union of singletons consisting of ordered triples which have distinct first and third components are disjoint. (Contributed by Alexander van der Vekens, 10-Mar-2018.)
Assertion
Ref Expression
otiunsndisj (𝐵𝑋Disj 𝑎𝑉 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩})
Distinct variable groups:   𝐵,𝑎,𝑐   𝑉,𝑎,𝑐   𝑊,𝑎,𝑐   𝑋,𝑎,𝑐

Proof of Theorem otiunsndisj
Dummy variables 𝑑 𝑒 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eliun 4460 . . . . . . . . . 10 (𝑠 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} ↔ ∃𝑐 ∈ (𝑊 ∖ {𝑎})𝑠 ∈ {⟨𝑎, 𝐵, 𝑐⟩})
2 otthg 4880 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎𝑉𝐵𝑋𝑐 ∈ (𝑊 ∖ {𝑎})) → (⟨𝑎, 𝐵, 𝑐⟩ = ⟨𝑑, 𝐵, 𝑒⟩ ↔ (𝑎 = 𝑑𝐵 = 𝐵𝑐 = 𝑒)))
3 simp1 1054 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎 = 𝑑𝐵 = 𝐵𝑐 = 𝑒) → 𝑎 = 𝑑)
42, 3syl6bi 242 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎𝑉𝐵𝑋𝑐 ∈ (𝑊 ∖ {𝑎})) → (⟨𝑎, 𝐵, 𝑐⟩ = ⟨𝑑, 𝐵, 𝑒⟩ → 𝑎 = 𝑑))
54con3d 147 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎𝑉𝐵𝑋𝑐 ∈ (𝑊 ∖ {𝑎})) → (¬ 𝑎 = 𝑑 → ¬ ⟨𝑎, 𝐵, 𝑐⟩ = ⟨𝑑, 𝐵, 𝑒⟩))
653exp 1256 . . . . . . . . . . . . . . . . . . . . 21 (𝑎𝑉 → (𝐵𝑋 → (𝑐 ∈ (𝑊 ∖ {𝑎}) → (¬ 𝑎 = 𝑑 → ¬ ⟨𝑎, 𝐵, 𝑐⟩ = ⟨𝑑, 𝐵, 𝑒⟩))))
76impcom 445 . . . . . . . . . . . . . . . . . . . 20 ((𝐵𝑋𝑎𝑉) → (𝑐 ∈ (𝑊 ∖ {𝑎}) → (¬ 𝑎 = 𝑑 → ¬ ⟨𝑎, 𝐵, 𝑐⟩ = ⟨𝑑, 𝐵, 𝑒⟩)))
87com3r 85 . . . . . . . . . . . . . . . . . . 19 𝑎 = 𝑑 → ((𝐵𝑋𝑎𝑉) → (𝑐 ∈ (𝑊 ∖ {𝑎}) → ¬ ⟨𝑎, 𝐵, 𝑐⟩ = ⟨𝑑, 𝐵, 𝑒⟩)))
98imp31 447 . . . . . . . . . . . . . . . . . 18 (((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋𝑎𝑉)) ∧ 𝑐 ∈ (𝑊 ∖ {𝑎})) → ¬ ⟨𝑎, 𝐵, 𝑐⟩ = ⟨𝑑, 𝐵, 𝑒⟩)
10 velsn 4141 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ {⟨𝑎, 𝐵, 𝑐⟩} ↔ 𝑠 = ⟨𝑎, 𝐵, 𝑐⟩)
11 eqeq1 2614 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = ⟨𝑎, 𝐵, 𝑐⟩ → (𝑠 = ⟨𝑑, 𝐵, 𝑒⟩ ↔ ⟨𝑎, 𝐵, 𝑐⟩ = ⟨𝑑, 𝐵, 𝑒⟩))
1211notbid 307 . . . . . . . . . . . . . . . . . . 19 (𝑠 = ⟨𝑎, 𝐵, 𝑐⟩ → (¬ 𝑠 = ⟨𝑑, 𝐵, 𝑒⟩ ↔ ¬ ⟨𝑎, 𝐵, 𝑐⟩ = ⟨𝑑, 𝐵, 𝑒⟩))
1310, 12sylbi 206 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ {⟨𝑎, 𝐵, 𝑐⟩} → (¬ 𝑠 = ⟨𝑑, 𝐵, 𝑒⟩ ↔ ¬ ⟨𝑎, 𝐵, 𝑐⟩ = ⟨𝑑, 𝐵, 𝑒⟩))
149, 13syl5ibrcom 236 . . . . . . . . . . . . . . . . 17 (((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋𝑎𝑉)) ∧ 𝑐 ∈ (𝑊 ∖ {𝑎})) → (𝑠 ∈ {⟨𝑎, 𝐵, 𝑐⟩} → ¬ 𝑠 = ⟨𝑑, 𝐵, 𝑒⟩))
1514imp 444 . . . . . . . . . . . . . . . 16 ((((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋𝑎𝑉)) ∧ 𝑐 ∈ (𝑊 ∖ {𝑎})) ∧ 𝑠 ∈ {⟨𝑎, 𝐵, 𝑐⟩}) → ¬ 𝑠 = ⟨𝑑, 𝐵, 𝑒⟩)
16 velsn 4141 . . . . . . . . . . . . . . . 16 (𝑠 ∈ {⟨𝑑, 𝐵, 𝑒⟩} ↔ 𝑠 = ⟨𝑑, 𝐵, 𝑒⟩)
1715, 16sylnibr 318 . . . . . . . . . . . . . . 15 ((((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋𝑎𝑉)) ∧ 𝑐 ∈ (𝑊 ∖ {𝑎})) ∧ 𝑠 ∈ {⟨𝑎, 𝐵, 𝑐⟩}) → ¬ 𝑠 ∈ {⟨𝑑, 𝐵, 𝑒⟩})
1817adantr 480 . . . . . . . . . . . . . 14 (((((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋𝑎𝑉)) ∧ 𝑐 ∈ (𝑊 ∖ {𝑎})) ∧ 𝑠 ∈ {⟨𝑎, 𝐵, 𝑐⟩}) ∧ 𝑒 ∈ (𝑊 ∖ {𝑑})) → ¬ 𝑠 ∈ {⟨𝑑, 𝐵, 𝑒⟩})
1918nrexdv 2984 . . . . . . . . . . . . 13 ((((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋𝑎𝑉)) ∧ 𝑐 ∈ (𝑊 ∖ {𝑎})) ∧ 𝑠 ∈ {⟨𝑎, 𝐵, 𝑐⟩}) → ¬ ∃𝑒 ∈ (𝑊 ∖ {𝑑})𝑠 ∈ {⟨𝑑, 𝐵, 𝑒⟩})
20 eliun 4460 . . . . . . . . . . . . 13 (𝑠 𝑒 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑒⟩} ↔ ∃𝑒 ∈ (𝑊 ∖ {𝑑})𝑠 ∈ {⟨𝑑, 𝐵, 𝑒⟩})
2119, 20sylnibr 318 . . . . . . . . . . . 12 ((((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋𝑎𝑉)) ∧ 𝑐 ∈ (𝑊 ∖ {𝑎})) ∧ 𝑠 ∈ {⟨𝑎, 𝐵, 𝑐⟩}) → ¬ 𝑠 𝑒 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑒⟩})
2221ex 449 . . . . . . . . . . 11 (((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋𝑎𝑉)) ∧ 𝑐 ∈ (𝑊 ∖ {𝑎})) → (𝑠 ∈ {⟨𝑎, 𝐵, 𝑐⟩} → ¬ 𝑠 𝑒 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑒⟩}))
2322rexlimdva 3013 . . . . . . . . . 10 ((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋𝑎𝑉)) → (∃𝑐 ∈ (𝑊 ∖ {𝑎})𝑠 ∈ {⟨𝑎, 𝐵, 𝑐⟩} → ¬ 𝑠 𝑒 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑒⟩}))
241, 23syl5bi 231 . . . . . . . . 9 ((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋𝑎𝑉)) → (𝑠 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} → ¬ 𝑠 𝑒 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑒⟩}))
2524ralrimiv 2948 . . . . . . . 8 ((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋𝑎𝑉)) → ∀𝑠 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} ¬ 𝑠 𝑒 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑒⟩})
26 oteq3 4351 . . . . . . . . . . . . 13 (𝑐 = 𝑒 → ⟨𝑑, 𝐵, 𝑐⟩ = ⟨𝑑, 𝐵, 𝑒⟩)
2726sneqd 4137 . . . . . . . . . . . 12 (𝑐 = 𝑒 → {⟨𝑑, 𝐵, 𝑐⟩} = {⟨𝑑, 𝐵, 𝑒⟩})
2827cbviunv 4495 . . . . . . . . . . 11 𝑐 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑐⟩} = 𝑒 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑒⟩}
2928eleq2i 2680 . . . . . . . . . 10 (𝑠 𝑐 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑐⟩} ↔ 𝑠 𝑒 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑒⟩})
3029notbii 309 . . . . . . . . 9 𝑠 𝑐 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑐⟩} ↔ ¬ 𝑠 𝑒 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑒⟩})
3130ralbii 2963 . . . . . . . 8 (∀𝑠 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} ¬ 𝑠 𝑐 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑐⟩} ↔ ∀𝑠 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} ¬ 𝑠 𝑒 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑒⟩})
3225, 31sylibr 223 . . . . . . 7 ((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋𝑎𝑉)) → ∀𝑠 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} ¬ 𝑠 𝑐 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑐⟩})
33 disj 3969 . . . . . . 7 (( 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} ∩ 𝑐 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑐⟩}) = ∅ ↔ ∀𝑠 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} ¬ 𝑠 𝑐 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑐⟩})
3432, 33sylibr 223 . . . . . 6 ((¬ 𝑎 = 𝑑 ∧ (𝐵𝑋𝑎𝑉)) → ( 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} ∩ 𝑐 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑐⟩}) = ∅)
3534expcom 450 . . . . 5 ((𝐵𝑋𝑎𝑉) → (¬ 𝑎 = 𝑑 → ( 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} ∩ 𝑐 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑐⟩}) = ∅))
3635orrd 392 . . . 4 ((𝐵𝑋𝑎𝑉) → (𝑎 = 𝑑 ∨ ( 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} ∩ 𝑐 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑐⟩}) = ∅))
3736adantrr 749 . . 3 ((𝐵𝑋 ∧ (𝑎𝑉𝑑𝑉)) → (𝑎 = 𝑑 ∨ ( 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} ∩ 𝑐 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑐⟩}) = ∅))
3837ralrimivva 2954 . 2 (𝐵𝑋 → ∀𝑎𝑉𝑑𝑉 (𝑎 = 𝑑 ∨ ( 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} ∩ 𝑐 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑐⟩}) = ∅))
39 sneq 4135 . . . . 5 (𝑎 = 𝑑 → {𝑎} = {𝑑})
4039difeq2d 3690 . . . 4 (𝑎 = 𝑑 → (𝑊 ∖ {𝑎}) = (𝑊 ∖ {𝑑}))
41 oteq1 4349 . . . . 5 (𝑎 = 𝑑 → ⟨𝑎, 𝐵, 𝑐⟩ = ⟨𝑑, 𝐵, 𝑐⟩)
4241sneqd 4137 . . . 4 (𝑎 = 𝑑 → {⟨𝑎, 𝐵, 𝑐⟩} = {⟨𝑑, 𝐵, 𝑐⟩})
4340, 42iuneq12d 4482 . . 3 (𝑎 = 𝑑 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} = 𝑐 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑐⟩})
4443disjor 4567 . 2 (Disj 𝑎𝑉 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} ↔ ∀𝑎𝑉𝑑𝑉 (𝑎 = 𝑑 ∨ ( 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩} ∩ 𝑐 ∈ (𝑊 ∖ {𝑑}){⟨𝑑, 𝐵, 𝑐⟩}) = ∅))
4538, 44sylibr 223 1 (𝐵𝑋Disj 𝑎𝑉 𝑐 ∈ (𝑊 ∖ {𝑎}){⟨𝑎, 𝐵, 𝑐⟩})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  cdif 3537  cin 3539  c0 3874  {csn 4125  cotp 4133   ciun 4455  Disj wdisj 4553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rmo 2904  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-ot 4134  df-iun 4457  df-disj 4554
This theorem is referenced by:  usgreghash2spotv  26593
  Copyright terms: Public domain W3C validator