Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostth2 Structured version   Visualization version   GIF version

Theorem ostth2 25126
 Description: - Lemma for ostth 25128: regular case. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
padic.j 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
ostth.k 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))
ostth.1 (𝜑𝐹𝐴)
ostth2.2 (𝜑𝑁 ∈ (ℤ‘2))
ostth2.3 (𝜑 → 1 < (𝐹𝑁))
ostth2.4 𝑅 = ((log‘(𝐹𝑁)) / (log‘𝑁))
Assertion
Ref Expression
ostth2 (𝜑 → ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)))
Distinct variable groups:   𝑞,𝑎,𝑥,𝑦,𝜑   𝐽,𝑎,𝑦   𝐴,𝑎,𝑞,𝑥,𝑦   𝑥,𝑁,𝑦   𝑥,𝑄,𝑦   𝐹,𝑎,𝑞,𝑦   𝑅,𝑎,𝑞,𝑦   𝑥,𝐹
Allowed substitution hints:   𝑄(𝑞,𝑎)   𝑅(𝑥)   𝐽(𝑥,𝑞)   𝐾(𝑥,𝑦,𝑞,𝑎)   𝑁(𝑞,𝑎)

Proof of Theorem ostth2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ostth2.4 . . . . 5 𝑅 = ((log‘(𝐹𝑁)) / (log‘𝑁))
2 ostth.1 . . . . . . . 8 (𝜑𝐹𝐴)
3 ostth2.2 . . . . . . . . . . 11 (𝜑𝑁 ∈ (ℤ‘2))
4 eluz2b2 11637 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁))
53, 4sylib 207 . . . . . . . . . 10 (𝜑 → (𝑁 ∈ ℕ ∧ 1 < 𝑁))
65simpld 474 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
7 nnq 11677 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℚ)
86, 7syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℚ)
9 qabsabv.a . . . . . . . . 9 𝐴 = (AbsVal‘𝑄)
10 qrng.q . . . . . . . . . 10 𝑄 = (ℂflds ℚ)
1110qrngbas 25108 . . . . . . . . 9 ℚ = (Base‘𝑄)
129, 11abvcl 18647 . . . . . . . 8 ((𝐹𝐴𝑁 ∈ ℚ) → (𝐹𝑁) ∈ ℝ)
132, 8, 12syl2anc 691 . . . . . . 7 (𝜑 → (𝐹𝑁) ∈ ℝ)
14 ostth2.3 . . . . . . 7 (𝜑 → 1 < (𝐹𝑁))
1513, 14rplogcld 24179 . . . . . 6 (𝜑 → (log‘(𝐹𝑁)) ∈ ℝ+)
166nnred 10912 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
175simprd 478 . . . . . . 7 (𝜑 → 1 < 𝑁)
1816, 17rplogcld 24179 . . . . . 6 (𝜑 → (log‘𝑁) ∈ ℝ+)
1915, 18rpdivcld 11765 . . . . 5 (𝜑 → ((log‘(𝐹𝑁)) / (log‘𝑁)) ∈ ℝ+)
201, 19syl5eqel 2692 . . . 4 (𝜑𝑅 ∈ ℝ+)
2120rpred 11748 . . 3 (𝜑𝑅 ∈ ℝ)
2220rpgt0d 11751 . . 3 (𝜑 → 0 < 𝑅)
236nnnn0d 11228 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
2410, 9qabvle 25114 . . . . . . . . 9 ((𝐹𝐴𝑁 ∈ ℕ0) → (𝐹𝑁) ≤ 𝑁)
252, 23, 24syl2anc 691 . . . . . . . 8 (𝜑 → (𝐹𝑁) ≤ 𝑁)
266nnne0d 10942 . . . . . . . . . . 11 (𝜑𝑁 ≠ 0)
2710qrng0 25110 . . . . . . . . . . . 12 0 = (0g𝑄)
289, 11, 27abvgt0 18651 . . . . . . . . . . 11 ((𝐹𝐴𝑁 ∈ ℚ ∧ 𝑁 ≠ 0) → 0 < (𝐹𝑁))
292, 8, 26, 28syl3anc 1318 . . . . . . . . . 10 (𝜑 → 0 < (𝐹𝑁))
3013, 29elrpd 11745 . . . . . . . . 9 (𝜑 → (𝐹𝑁) ∈ ℝ+)
3130reeflogd 24174 . . . . . . . 8 (𝜑 → (exp‘(log‘(𝐹𝑁))) = (𝐹𝑁))
326nnrpd 11746 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ+)
3332reeflogd 24174 . . . . . . . 8 (𝜑 → (exp‘(log‘𝑁)) = 𝑁)
3425, 31, 333brtr4d 4615 . . . . . . 7 (𝜑 → (exp‘(log‘(𝐹𝑁))) ≤ (exp‘(log‘𝑁)))
3515rpred 11748 . . . . . . . 8 (𝜑 → (log‘(𝐹𝑁)) ∈ ℝ)
3632relogcld 24173 . . . . . . . 8 (𝜑 → (log‘𝑁) ∈ ℝ)
37 efle 14687 . . . . . . . 8 (((log‘(𝐹𝑁)) ∈ ℝ ∧ (log‘𝑁) ∈ ℝ) → ((log‘(𝐹𝑁)) ≤ (log‘𝑁) ↔ (exp‘(log‘(𝐹𝑁))) ≤ (exp‘(log‘𝑁))))
3835, 36, 37syl2anc 691 . . . . . . 7 (𝜑 → ((log‘(𝐹𝑁)) ≤ (log‘𝑁) ↔ (exp‘(log‘(𝐹𝑁))) ≤ (exp‘(log‘𝑁))))
3934, 38mpbird 246 . . . . . 6 (𝜑 → (log‘(𝐹𝑁)) ≤ (log‘𝑁))
4018rpcnd 11750 . . . . . . 7 (𝜑 → (log‘𝑁) ∈ ℂ)
4140mulid1d 9936 . . . . . 6 (𝜑 → ((log‘𝑁) · 1) = (log‘𝑁))
4239, 41breqtrrd 4611 . . . . 5 (𝜑 → (log‘(𝐹𝑁)) ≤ ((log‘𝑁) · 1))
43 1red 9934 . . . . . 6 (𝜑 → 1 ∈ ℝ)
4435, 43, 18ledivmuld 11801 . . . . 5 (𝜑 → (((log‘(𝐹𝑁)) / (log‘𝑁)) ≤ 1 ↔ (log‘(𝐹𝑁)) ≤ ((log‘𝑁) · 1)))
4542, 44mpbird 246 . . . 4 (𝜑 → ((log‘(𝐹𝑁)) / (log‘𝑁)) ≤ 1)
461, 45syl5eqbr 4618 . . 3 (𝜑𝑅 ≤ 1)
47 0xr 9965 . . . 4 0 ∈ ℝ*
48 1re 9918 . . . 4 1 ∈ ℝ
49 elioc2 12107 . . . 4 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝑅 ∈ (0(,]1) ↔ (𝑅 ∈ ℝ ∧ 0 < 𝑅𝑅 ≤ 1)))
5047, 48, 49mp2an 704 . . 3 (𝑅 ∈ (0(,]1) ↔ (𝑅 ∈ ℝ ∧ 0 < 𝑅𝑅 ≤ 1))
5121, 22, 46, 50syl3anbrc 1239 . 2 (𝜑𝑅 ∈ (0(,]1))
5210, 9qabsabv 25118 . . . 4 (abs ↾ ℚ) ∈ 𝐴
53 fvres 6117 . . . . . . . 8 (𝑦 ∈ ℚ → ((abs ↾ ℚ)‘𝑦) = (abs‘𝑦))
5453oveq1d 6564 . . . . . . 7 (𝑦 ∈ ℚ → (((abs ↾ ℚ)‘𝑦)↑𝑐𝑅) = ((abs‘𝑦)↑𝑐𝑅))
5554mpteq2ia 4668 . . . . . 6 (𝑦 ∈ ℚ ↦ (((abs ↾ ℚ)‘𝑦)↑𝑐𝑅)) = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅))
5655eqcomi 2619 . . . . 5 (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅)) = (𝑦 ∈ ℚ ↦ (((abs ↾ ℚ)‘𝑦)↑𝑐𝑅))
579, 11, 56abvcxp 25104 . . . 4 (((abs ↾ ℚ) ∈ 𝐴𝑅 ∈ (0(,]1)) → (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅)) ∈ 𝐴)
5852, 51, 57sylancr 694 . . 3 (𝜑 → (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅)) ∈ 𝐴)
59 eluzelz 11573 . . . . . 6 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℤ)
60 zq 11670 . . . . . 6 (𝑧 ∈ ℤ → 𝑧 ∈ ℚ)
61 fveq2 6103 . . . . . . . 8 (𝑦 = 𝑧 → (abs‘𝑦) = (abs‘𝑧))
6261oveq1d 6564 . . . . . . 7 (𝑦 = 𝑧 → ((abs‘𝑦)↑𝑐𝑅) = ((abs‘𝑧)↑𝑐𝑅))
63 eqid 2610 . . . . . . 7 (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅)) = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅))
64 ovex 6577 . . . . . . 7 ((abs‘𝑧)↑𝑐𝑅) ∈ V
6562, 63, 64fvmpt 6191 . . . . . 6 (𝑧 ∈ ℚ → ((𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅))‘𝑧) = ((abs‘𝑧)↑𝑐𝑅))
6659, 60, 653syl 18 . . . . 5 (𝑧 ∈ (ℤ‘2) → ((𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅))‘𝑧) = ((abs‘𝑧)↑𝑐𝑅))
6766adantl 481 . . . 4 ((𝜑𝑧 ∈ (ℤ‘2)) → ((𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅))‘𝑧) = ((abs‘𝑧)↑𝑐𝑅))
68 simpr 476 . . . . . . . . 9 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ (ℤ‘2))
69 eluz2b2 11637 . . . . . . . . 9 (𝑧 ∈ (ℤ‘2) ↔ (𝑧 ∈ ℕ ∧ 1 < 𝑧))
7068, 69sylib 207 . . . . . . . 8 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝑧 ∈ ℕ ∧ 1 < 𝑧))
7170simpld 474 . . . . . . 7 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ ℕ)
7271nnred 10912 . . . . . 6 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ ℝ)
7371nnnn0d 11228 . . . . . . 7 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ ℕ0)
7473nn0ge0d 11231 . . . . . 6 ((𝜑𝑧 ∈ (ℤ‘2)) → 0 ≤ 𝑧)
7572, 74absidd 14009 . . . . 5 ((𝜑𝑧 ∈ (ℤ‘2)) → (abs‘𝑧) = 𝑧)
7675oveq1d 6564 . . . 4 ((𝜑𝑧 ∈ (ℤ‘2)) → ((abs‘𝑧)↑𝑐𝑅) = (𝑧𝑐𝑅))
7772recnd 9947 . . . . . 6 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ ℂ)
7871nnne0d 10942 . . . . . 6 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ≠ 0)
7920rpcnd 11750 . . . . . . 7 (𝜑𝑅 ∈ ℂ)
8079adantr 480 . . . . . 6 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑅 ∈ ℂ)
8177, 78, 80cxpefd 24258 . . . . 5 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝑧𝑐𝑅) = (exp‘(𝑅 · (log‘𝑧))))
82 padic.j . . . . . . . . . . 11 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
83 ostth.k . . . . . . . . . . 11 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))
842adantr 480 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝐹𝐴)
853adantr 480 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑁 ∈ (ℤ‘2))
8614adantr 480 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (ℤ‘2)) → 1 < (𝐹𝑁))
87 eqid 2610 . . . . . . . . . . 11 ((log‘(𝐹𝑧)) / (log‘𝑧)) = ((log‘(𝐹𝑧)) / (log‘𝑧))
88 eqid 2610 . . . . . . . . . . 11 if((𝐹𝑧) ≤ 1, 1, (𝐹𝑧)) = if((𝐹𝑧) ≤ 1, 1, (𝐹𝑧))
89 eqid 2610 . . . . . . . . . . 11 ((log‘𝑁) / (log‘𝑧)) = ((log‘𝑁) / (log‘𝑧))
9010, 9, 82, 83, 84, 85, 86, 1, 68, 87, 88, 89ostth2lem4 25125 . . . . . . . . . 10 ((𝜑𝑧 ∈ (ℤ‘2)) → (1 < (𝐹𝑧) ∧ 𝑅 ≤ ((log‘(𝐹𝑧)) / (log‘𝑧))))
9190simprd 478 . . . . . . . . 9 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑅 ≤ ((log‘(𝐹𝑧)) / (log‘𝑧)))
9290simpld 474 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (ℤ‘2)) → 1 < (𝐹𝑧))
93 eqid 2610 . . . . . . . . . . 11 if((𝐹𝑁) ≤ 1, 1, (𝐹𝑁)) = if((𝐹𝑁) ≤ 1, 1, (𝐹𝑁))
94 eqid 2610 . . . . . . . . . . 11 ((log‘𝑧) / (log‘𝑁)) = ((log‘𝑧) / (log‘𝑁))
9510, 9, 82, 83, 84, 68, 92, 87, 85, 1, 93, 94ostth2lem4 25125 . . . . . . . . . 10 ((𝜑𝑧 ∈ (ℤ‘2)) → (1 < (𝐹𝑁) ∧ ((log‘(𝐹𝑧)) / (log‘𝑧)) ≤ 𝑅))
9695simprd 478 . . . . . . . . 9 ((𝜑𝑧 ∈ (ℤ‘2)) → ((log‘(𝐹𝑧)) / (log‘𝑧)) ≤ 𝑅)
9721adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑅 ∈ ℝ)
9859adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ ℤ)
9998, 60syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ ℚ)
1009, 11abvcl 18647 . . . . . . . . . . . . . 14 ((𝐹𝐴𝑧 ∈ ℚ) → (𝐹𝑧) ∈ ℝ)
10184, 99, 100syl2anc 691 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝐹𝑧) ∈ ℝ)
1029, 11, 27abvgt0 18651 . . . . . . . . . . . . . 14 ((𝐹𝐴𝑧 ∈ ℚ ∧ 𝑧 ≠ 0) → 0 < (𝐹𝑧))
10384, 99, 78, 102syl3anc 1318 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (ℤ‘2)) → 0 < (𝐹𝑧))
104101, 103elrpd 11745 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝐹𝑧) ∈ ℝ+)
105104relogcld 24173 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (ℤ‘2)) → (log‘(𝐹𝑧)) ∈ ℝ)
10671nnrpd 11746 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ ℝ+)
107106relogcld 24173 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (ℤ‘2)) → (log‘𝑧) ∈ ℝ)
108 ef0 14660 . . . . . . . . . . . . . 14 (exp‘0) = 1
10970simprd 478 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (ℤ‘2)) → 1 < 𝑧)
110106reeflogd 24174 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (ℤ‘2)) → (exp‘(log‘𝑧)) = 𝑧)
111109, 110breqtrrd 4611 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (ℤ‘2)) → 1 < (exp‘(log‘𝑧)))
112108, 111syl5eqbr 4618 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (ℤ‘2)) → (exp‘0) < (exp‘(log‘𝑧)))
113 0re 9919 . . . . . . . . . . . . . 14 0 ∈ ℝ
114 eflt 14686 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ (log‘𝑧) ∈ ℝ) → (0 < (log‘𝑧) ↔ (exp‘0) < (exp‘(log‘𝑧))))
115113, 107, 114sylancr 694 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (ℤ‘2)) → (0 < (log‘𝑧) ↔ (exp‘0) < (exp‘(log‘𝑧))))
116112, 115mpbird 246 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (ℤ‘2)) → 0 < (log‘𝑧))
117116gt0ne0d 10471 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (ℤ‘2)) → (log‘𝑧) ≠ 0)
118105, 107, 117redivcld 10732 . . . . . . . . . 10 ((𝜑𝑧 ∈ (ℤ‘2)) → ((log‘(𝐹𝑧)) / (log‘𝑧)) ∈ ℝ)
11997, 118letri3d 10058 . . . . . . . . 9 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝑅 = ((log‘(𝐹𝑧)) / (log‘𝑧)) ↔ (𝑅 ≤ ((log‘(𝐹𝑧)) / (log‘𝑧)) ∧ ((log‘(𝐹𝑧)) / (log‘𝑧)) ≤ 𝑅)))
12091, 96, 119mpbir2and 959 . . . . . . . 8 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑅 = ((log‘(𝐹𝑧)) / (log‘𝑧)))
121120oveq1d 6564 . . . . . . 7 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝑅 · (log‘𝑧)) = (((log‘(𝐹𝑧)) / (log‘𝑧)) · (log‘𝑧)))
122105recnd 9947 . . . . . . . 8 ((𝜑𝑧 ∈ (ℤ‘2)) → (log‘(𝐹𝑧)) ∈ ℂ)
123107recnd 9947 . . . . . . . 8 ((𝜑𝑧 ∈ (ℤ‘2)) → (log‘𝑧) ∈ ℂ)
124122, 123, 117divcan1d 10681 . . . . . . 7 ((𝜑𝑧 ∈ (ℤ‘2)) → (((log‘(𝐹𝑧)) / (log‘𝑧)) · (log‘𝑧)) = (log‘(𝐹𝑧)))
125121, 124eqtrd 2644 . . . . . 6 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝑅 · (log‘𝑧)) = (log‘(𝐹𝑧)))
126125fveq2d 6107 . . . . 5 ((𝜑𝑧 ∈ (ℤ‘2)) → (exp‘(𝑅 · (log‘𝑧))) = (exp‘(log‘(𝐹𝑧))))
127104reeflogd 24174 . . . . 5 ((𝜑𝑧 ∈ (ℤ‘2)) → (exp‘(log‘(𝐹𝑧))) = (𝐹𝑧))
12881, 126, 1273eqtrd 2648 . . . 4 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝑧𝑐𝑅) = (𝐹𝑧))
12967, 76, 1283eqtrrd 2649 . . 3 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝐹𝑧) = ((𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅))‘𝑧))
13010, 9, 2, 58, 129ostthlem1 25116 . 2 (𝜑𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅)))
131 oveq2 6557 . . . . 5 (𝑎 = 𝑅 → ((abs‘𝑦)↑𝑐𝑎) = ((abs‘𝑦)↑𝑐𝑅))
132131mpteq2dv 4673 . . . 4 (𝑎 = 𝑅 → (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅)))
133132eqeq2d 2620 . . 3 (𝑎 = 𝑅 → (𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ↔ 𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅))))
134133rspcev 3282 . 2 ((𝑅 ∈ (0(,]1) ∧ 𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅))) → ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)))
13551, 130, 134syl2anc 691 1 (𝜑 → ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∃wrex 2897  ifcif 4036   class class class wbr 4583   ↦ cmpt 4643   ↾ cres 5040  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816   · cmul 9820  ℝ*cxr 9952   < clt 9953   ≤ cle 9954  -cneg 10146   / cdiv 10563  ℕcn 10897  2c2 10947  ℕ0cn0 11169  ℤcz 11254  ℤ≥cuz 11563  ℚcq 11664  ℝ+crp 11708  (,]cioc 12047  ↑cexp 12722  abscabs 13822  expce 14631  ℙcprime 15223   pCnt cpc 15379   ↾s cress 15696  AbsValcabv 18639  ℂfldccnfld 19567  logclog 24105  ↑𝑐ccxp 24106 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-mulg 17364  df-subg 17414  df-cntz 17573  df-cmn 18018  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-drng 18572  df-subrg 18601  df-abv 18640  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-cxp 24108 This theorem is referenced by:  ostth  25128
 Copyright terms: Public domain W3C validator