Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orvclteinc Structured version   Visualization version   GIF version

Theorem orvclteinc 29864
 Description: Preimage maps produced by the "lower than or equal" relation are increasing. (Contributed by Thierry Arnoux, 11-Feb-2017.)
Hypotheses
Ref Expression
dstfrv.1 (𝜑𝑃 ∈ Prob)
dstfrv.2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
orvclteinc.1 (𝜑𝐴 ∈ ℝ)
orvclteinc.2 (𝜑𝐵 ∈ ℝ)
orvclteinc.3 (𝜑𝐴𝐵)
Assertion
Ref Expression
orvclteinc (𝜑 → (𝑋RV/𝑐𝐴) ⊆ (𝑋RV/𝑐𝐵))

Proof of Theorem orvclteinc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dstfrv.1 . . . . 5 (𝜑𝑃 ∈ Prob)
2 dstfrv.2 . . . . 5 (𝜑𝑋 ∈ (rRndVar‘𝑃))
31, 2rrvf2 29837 . . . 4 (𝜑𝑋:dom 𝑋⟶ℝ)
4 ffun 5961 . . . 4 (𝑋:dom 𝑋⟶ℝ → Fun 𝑋)
53, 4syl 17 . . 3 (𝜑 → Fun 𝑋)
6 simp2 1055 . . . . . 6 ((𝜑𝑥 ∈ ℝ ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
7 orvclteinc.1 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
873ad2ant1 1075 . . . . . 6 ((𝜑𝑥 ∈ ℝ ∧ 𝑥𝐴) → 𝐴 ∈ ℝ)
9 orvclteinc.2 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
1093ad2ant1 1075 . . . . . 6 ((𝜑𝑥 ∈ ℝ ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
11 simp3 1056 . . . . . 6 ((𝜑𝑥 ∈ ℝ ∧ 𝑥𝐴) → 𝑥𝐴)
12 orvclteinc.3 . . . . . . 7 (𝜑𝐴𝐵)
13123ad2ant1 1075 . . . . . 6 ((𝜑𝑥 ∈ ℝ ∧ 𝑥𝐴) → 𝐴𝐵)
146, 8, 10, 11, 13letrd 10073 . . . . 5 ((𝜑𝑥 ∈ ℝ ∧ 𝑥𝐴) → 𝑥𝐵)
15143expia 1259 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝑥𝐴𝑥𝐵))
1615ss2rabdv 3646 . . 3 (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥𝐴} ⊆ {𝑥 ∈ ℝ ∣ 𝑥𝐵})
17 sspreima 28827 . . 3 ((Fun 𝑋 ∧ {𝑥 ∈ ℝ ∣ 𝑥𝐴} ⊆ {𝑥 ∈ ℝ ∣ 𝑥𝐵}) → (𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥𝐴}) ⊆ (𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥𝐵}))
185, 16, 17syl2anc 691 . 2 (𝜑 → (𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥𝐴}) ⊆ (𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥𝐵}))
191, 2, 7orrvcval4 29853 . 2 (𝜑 → (𝑋RV/𝑐𝐴) = (𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥𝐴}))
201, 2, 9orrvcval4 29853 . 2 (𝜑 → (𝑋RV/𝑐𝐵) = (𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥𝐵}))
2118, 19, 203sstr4d 3611 1 (𝜑 → (𝑋RV/𝑐𝐴) ⊆ (𝑋RV/𝑐𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1031   ∈ wcel 1977  {crab 2900   ⊆ wss 3540   class class class wbr 4583  ◡ccnv 5037  dom cdm 5038   “ cima 5041  Fun wfun 5798  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ℝcr 9814   ≤ cle 9954  Probcprb 29796  rRndVarcrrv 29829  ∘RV/𝑐corvc 29844 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-ioo 12050  df-topgen 15927  df-top 20521  df-bases 20522  df-esum 29417  df-siga 29498  df-sigagen 29529  df-brsiga 29572  df-meas 29586  df-mbfm 29640  df-prob 29797  df-rrv 29830  df-orvc 29845 This theorem is referenced by:  dstfrvinc  29865  dstfrvclim1  29866
 Copyright terms: Public domain W3C validator