Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orrvcoel Structured version   Visualization version   GIF version

Theorem orrvcoel 29854
 Description: If the relation produces open sets, preimage maps of a random variable are measurable sets. (Contributed by Thierry Arnoux, 21-Jan-2017.)
Hypotheses
Ref Expression
orrvccel.1 (𝜑𝑃 ∈ Prob)
orrvccel.2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
orrvccel.4 (𝜑𝐴𝑉)
orrvcoel.5 (𝜑 → {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴} ∈ (topGen‘ran (,)))
Assertion
Ref Expression
orrvcoel (𝜑 → (𝑋RV/𝑐𝑅𝐴) ∈ dom 𝑃)
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅   𝑦,𝑋
Allowed substitution hints:   𝜑(𝑦)   𝑃(𝑦)   𝑉(𝑦)

Proof of Theorem orrvcoel
StepHypRef Expression
1 orrvccel.1 . . 3 (𝜑𝑃 ∈ Prob)
2 domprobsiga 29800 . . 3 (𝑃 ∈ Prob → dom 𝑃 ran sigAlgebra)
31, 2syl 17 . 2 (𝜑 → dom 𝑃 ran sigAlgebra)
4 retop 22375 . . 3 (topGen‘ran (,)) ∈ Top
54a1i 11 . 2 (𝜑 → (topGen‘ran (,)) ∈ Top)
6 orrvccel.2 . . . 4 (𝜑𝑋 ∈ (rRndVar‘𝑃))
71rrvmbfm 29831 . . . 4 (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅)))
86, 7mpbid 221 . . 3 (𝜑𝑋 ∈ (dom 𝑃MblFnM𝔅))
9 df-brsiga 29572 . . . 4 𝔅 = (sigaGen‘(topGen‘ran (,)))
109oveq2i 6560 . . 3 (dom 𝑃MblFnM𝔅) = (dom 𝑃MblFnM(sigaGen‘(topGen‘ran (,))))
118, 10syl6eleq 2698 . 2 (𝜑𝑋 ∈ (dom 𝑃MblFnM(sigaGen‘(topGen‘ran (,)))))
12 orrvccel.4 . 2 (𝜑𝐴𝑉)
13 uniretop 22376 . . . 4 ℝ = (topGen‘ran (,))
14 rabeq 3166 . . . 4 (ℝ = (topGen‘ran (,)) → {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴} = {𝑦 (topGen‘ran (,)) ∣ 𝑦𝑅𝐴})
1513, 14ax-mp 5 . . 3 {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴} = {𝑦 (topGen‘ran (,)) ∣ 𝑦𝑅𝐴}
16 orrvcoel.5 . . 3 (𝜑 → {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴} ∈ (topGen‘ran (,)))
1715, 16syl5eqelr 2693 . 2 (𝜑 → {𝑦 (topGen‘ran (,)) ∣ 𝑦𝑅𝐴} ∈ (topGen‘ran (,)))
183, 5, 11, 12, 17orvcoel 29850 1 (𝜑 → (𝑋RV/𝑐𝑅𝐴) ∈ dom 𝑃)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ∈ wcel 1977  {crab 2900  ∪ cuni 4372   class class class wbr 4583  dom cdm 5038  ran crn 5039  ‘cfv 5804  (class class class)co 6549  ℝcr 9814  (,)cioo 12046  topGenctg 15921  Topctop 20517  sigAlgebracsiga 29497  sigaGencsigagen 29528  𝔅ℝcbrsiga 29571  MblFnMcmbfm 29639  Probcprb 29796  rRndVarcrrv 29829  ∘RV/𝑐corvc 29844 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-ioo 12050  df-topgen 15927  df-top 20521  df-bases 20522  df-esum 29417  df-siga 29498  df-sigagen 29529  df-brsiga 29572  df-meas 29586  df-mbfm 29640  df-prob 29797  df-rrv 29830  df-orvc 29845 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator