Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orngrmulle Structured version   Visualization version   GIF version

Theorem orngrmulle 29137
 Description: In an ordered ring, multiplication with a positive does not change comparison. (Contributed by Thierry Arnoux, 10-Apr-2018.)
Hypotheses
Ref Expression
ornglmullt.b 𝐵 = (Base‘𝑅)
ornglmullt.t · = (.r𝑅)
ornglmullt.0 0 = (0g𝑅)
ornglmullt.1 (𝜑𝑅 ∈ oRing)
ornglmullt.2 (𝜑𝑋𝐵)
ornglmullt.3 (𝜑𝑌𝐵)
ornglmullt.4 (𝜑𝑍𝐵)
orngmulle.l = (le‘𝑅)
orngmulle.5 (𝜑𝑋 𝑌)
orngmulle.6 (𝜑0 𝑍)
Assertion
Ref Expression
orngrmulle (𝜑 → (𝑋 · 𝑍) (𝑌 · 𝑍))

Proof of Theorem orngrmulle
StepHypRef Expression
1 ornglmullt.1 . . . . 5 (𝜑𝑅 ∈ oRing)
2 orngogrp 29132 . . . . 5 (𝑅 ∈ oRing → 𝑅 ∈ oGrp)
31, 2syl 17 . . . 4 (𝜑𝑅 ∈ oGrp)
4 isogrp 29033 . . . . 5 (𝑅 ∈ oGrp ↔ (𝑅 ∈ Grp ∧ 𝑅 ∈ oMnd))
54simprbi 479 . . . 4 (𝑅 ∈ oGrp → 𝑅 ∈ oMnd)
63, 5syl 17 . . 3 (𝜑𝑅 ∈ oMnd)
7 orngring 29131 . . . . . 6 (𝑅 ∈ oRing → 𝑅 ∈ Ring)
81, 7syl 17 . . . . 5 (𝜑𝑅 ∈ Ring)
9 ringgrp 18375 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
108, 9syl 17 . . . 4 (𝜑𝑅 ∈ Grp)
11 ornglmullt.b . . . . 5 𝐵 = (Base‘𝑅)
12 ornglmullt.0 . . . . 5 0 = (0g𝑅)
1311, 12grpidcl 17273 . . . 4 (𝑅 ∈ Grp → 0𝐵)
1410, 13syl 17 . . 3 (𝜑0𝐵)
15 ornglmullt.3 . . . . 5 (𝜑𝑌𝐵)
16 ornglmullt.4 . . . . 5 (𝜑𝑍𝐵)
17 ornglmullt.t . . . . . 6 · = (.r𝑅)
1811, 17ringcl 18384 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑍𝐵) → (𝑌 · 𝑍) ∈ 𝐵)
198, 15, 16, 18syl3anc 1318 . . . 4 (𝜑 → (𝑌 · 𝑍) ∈ 𝐵)
20 ornglmullt.2 . . . . 5 (𝜑𝑋𝐵)
2111, 17ringcl 18384 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑍𝐵) → (𝑋 · 𝑍) ∈ 𝐵)
228, 20, 16, 21syl3anc 1318 . . . 4 (𝜑 → (𝑋 · 𝑍) ∈ 𝐵)
23 eqid 2610 . . . . 5 (-g𝑅) = (-g𝑅)
2411, 23grpsubcl 17318 . . . 4 ((𝑅 ∈ Grp ∧ (𝑌 · 𝑍) ∈ 𝐵 ∧ (𝑋 · 𝑍) ∈ 𝐵) → ((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍)) ∈ 𝐵)
2510, 19, 22, 24syl3anc 1318 . . 3 (𝜑 → ((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍)) ∈ 𝐵)
2611, 23grpsubcl 17318 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑌𝐵𝑋𝐵) → (𝑌(-g𝑅)𝑋) ∈ 𝐵)
2710, 15, 20, 26syl3anc 1318 . . . . 5 (𝜑 → (𝑌(-g𝑅)𝑋) ∈ 𝐵)
2811, 12, 23grpsubid 17322 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝑋𝐵) → (𝑋(-g𝑅)𝑋) = 0 )
2910, 20, 28syl2anc 691 . . . . . 6 (𝜑 → (𝑋(-g𝑅)𝑋) = 0 )
30 orngmulle.5 . . . . . . 7 (𝜑𝑋 𝑌)
31 orngmulle.l . . . . . . . 8 = (le‘𝑅)
3211, 31, 23ogrpsub 29048 . . . . . . 7 ((𝑅 ∈ oGrp ∧ (𝑋𝐵𝑌𝐵𝑋𝐵) ∧ 𝑋 𝑌) → (𝑋(-g𝑅)𝑋) (𝑌(-g𝑅)𝑋))
333, 20, 15, 20, 30, 32syl131anc 1331 . . . . . 6 (𝜑 → (𝑋(-g𝑅)𝑋) (𝑌(-g𝑅)𝑋))
3429, 33eqbrtrrd 4607 . . . . 5 (𝜑0 (𝑌(-g𝑅)𝑋))
35 orngmulle.6 . . . . 5 (𝜑0 𝑍)
3611, 31, 12, 17orngmul 29134 . . . . 5 ((𝑅 ∈ oRing ∧ ((𝑌(-g𝑅)𝑋) ∈ 𝐵0 (𝑌(-g𝑅)𝑋)) ∧ (𝑍𝐵0 𝑍)) → 0 ((𝑌(-g𝑅)𝑋) · 𝑍))
371, 27, 34, 16, 35, 36syl122anc 1327 . . . 4 (𝜑0 ((𝑌(-g𝑅)𝑋) · 𝑍))
3811, 17, 23, 8, 15, 20, 16rngsubdir 18423 . . . 4 (𝜑 → ((𝑌(-g𝑅)𝑋) · 𝑍) = ((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍)))
3937, 38breqtrd 4609 . . 3 (𝜑0 ((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍)))
40 eqid 2610 . . . 4 (+g𝑅) = (+g𝑅)
4111, 31, 40omndadd 29037 . . 3 ((𝑅 ∈ oMnd ∧ ( 0𝐵 ∧ ((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍)) ∈ 𝐵 ∧ (𝑋 · 𝑍) ∈ 𝐵) ∧ 0 ((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍))) → ( 0 (+g𝑅)(𝑋 · 𝑍)) (((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍))(+g𝑅)(𝑋 · 𝑍)))
426, 14, 25, 22, 39, 41syl131anc 1331 . 2 (𝜑 → ( 0 (+g𝑅)(𝑋 · 𝑍)) (((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍))(+g𝑅)(𝑋 · 𝑍)))
4311, 40, 12grplid 17275 . . 3 ((𝑅 ∈ Grp ∧ (𝑋 · 𝑍) ∈ 𝐵) → ( 0 (+g𝑅)(𝑋 · 𝑍)) = (𝑋 · 𝑍))
4410, 22, 43syl2anc 691 . 2 (𝜑 → ( 0 (+g𝑅)(𝑋 · 𝑍)) = (𝑋 · 𝑍))
4511, 40, 23grpnpcan 17330 . . 3 ((𝑅 ∈ Grp ∧ (𝑌 · 𝑍) ∈ 𝐵 ∧ (𝑋 · 𝑍) ∈ 𝐵) → (((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍))(+g𝑅)(𝑋 · 𝑍)) = (𝑌 · 𝑍))
4610, 19, 22, 45syl3anc 1318 . 2 (𝜑 → (((𝑌 · 𝑍)(-g𝑅)(𝑋 · 𝑍))(+g𝑅)(𝑋 · 𝑍)) = (𝑌 · 𝑍))
4742, 44, 463brtr3d 4614 1 (𝜑 → (𝑋 · 𝑍) (𝑌 · 𝑍))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ∈ wcel 1977   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  .rcmulr 15769  lecple 15775  0gc0g 15923  Grpcgrp 17245  -gcsg 17247  Ringcrg 18370  oMndcomnd 29028  oGrpcogrp 29029  oRingcorng 29126 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mgp 18313  df-ur 18325  df-ring 18372  df-omnd 29030  df-ogrp 29031  df-orng 29128 This theorem is referenced by:  orngrmullt  29139
 Copyright terms: Public domain W3C validator