Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordtri3OLD | Structured version Visualization version GIF version |
Description: Obsolete proof of ordtri3 5676 as of 24-Sep-2021. (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
ordtri3OLD | ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵 ↔ ¬ (𝐴 ∈ 𝐵 ∨ 𝐵 ∈ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordirr 5658 | . . . . . 6 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
2 | eleq2 2677 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐴 ↔ 𝐴 ∈ 𝐵)) | |
3 | 2 | notbid 307 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (¬ 𝐴 ∈ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵)) |
4 | 1, 3 | syl5ib 233 | . . . . 5 ⊢ (𝐴 = 𝐵 → (Ord 𝐴 → ¬ 𝐴 ∈ 𝐵)) |
5 | ordirr 5658 | . . . . . 6 ⊢ (Ord 𝐵 → ¬ 𝐵 ∈ 𝐵) | |
6 | eleq2 2677 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → (𝐵 ∈ 𝐴 ↔ 𝐵 ∈ 𝐵)) | |
7 | 6 | notbid 307 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (¬ 𝐵 ∈ 𝐴 ↔ ¬ 𝐵 ∈ 𝐵)) |
8 | 5, 7 | syl5ibr 235 | . . . . 5 ⊢ (𝐴 = 𝐵 → (Ord 𝐵 → ¬ 𝐵 ∈ 𝐴)) |
9 | 4, 8 | anim12d 584 | . . . 4 ⊢ (𝐴 = 𝐵 → ((Ord 𝐴 ∧ Ord 𝐵) → (¬ 𝐴 ∈ 𝐵 ∧ ¬ 𝐵 ∈ 𝐴))) |
10 | 9 | com12 32 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵 → (¬ 𝐴 ∈ 𝐵 ∧ ¬ 𝐵 ∈ 𝐴))) |
11 | pm4.56 515 | . . 3 ⊢ ((¬ 𝐴 ∈ 𝐵 ∧ ¬ 𝐵 ∈ 𝐴) ↔ ¬ (𝐴 ∈ 𝐵 ∨ 𝐵 ∈ 𝐴)) | |
12 | 10, 11 | syl6ib 240 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵 → ¬ (𝐴 ∈ 𝐵 ∨ 𝐵 ∈ 𝐴))) |
13 | ordtri3or 5672 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | |
14 | df-3or 1032 | . . . . 5 ⊢ ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) ↔ ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵) ∨ 𝐵 ∈ 𝐴)) | |
15 | 13, 14 | sylib 207 | . . . 4 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵) ∨ 𝐵 ∈ 𝐴)) |
16 | or32 548 | . . . 4 ⊢ (((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵) ∨ 𝐵 ∈ 𝐴) ↔ ((𝐴 ∈ 𝐵 ∨ 𝐵 ∈ 𝐴) ∨ 𝐴 = 𝐵)) | |
17 | 15, 16 | sylib 207 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴 ∈ 𝐵 ∨ 𝐵 ∈ 𝐴) ∨ 𝐴 = 𝐵)) |
18 | 17 | ord 391 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (¬ (𝐴 ∈ 𝐵 ∨ 𝐵 ∈ 𝐴) → 𝐴 = 𝐵)) |
19 | 12, 18 | impbid 201 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵 ↔ ¬ (𝐴 ∈ 𝐵 ∨ 𝐵 ∈ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 ∨ wo 382 ∧ wa 383 ∨ w3o 1030 = wceq 1475 ∈ wcel 1977 Ord word 5639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-tr 4681 df-eprel 4949 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-ord 5643 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |