MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtri2or3 Structured version   Visualization version   GIF version

Theorem ordtri2or3 5741
Description: A consequence of total ordering for ordinal classes. Similar to ordtri2or2 5740. (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
ordtri2or3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = (𝐴𝐵) ∨ 𝐵 = (𝐴𝐵)))

Proof of Theorem ordtri2or3
StepHypRef Expression
1 ordtri2or2 5740 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐵𝐴))
2 dfss 3555 . . 3 (𝐴𝐵𝐴 = (𝐴𝐵))
3 sseqin2 3779 . . . 4 (𝐵𝐴 ↔ (𝐴𝐵) = 𝐵)
4 eqcom 2617 . . . 4 ((𝐴𝐵) = 𝐵𝐵 = (𝐴𝐵))
53, 4bitri 263 . . 3 (𝐵𝐴𝐵 = (𝐴𝐵))
62, 5orbi12i 542 . 2 ((𝐴𝐵𝐵𝐴) ↔ (𝐴 = (𝐴𝐵) ∨ 𝐵 = (𝐴𝐵)))
71, 6sylib 207 1 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = (𝐴𝐵) ∨ 𝐵 = (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383   = wceq 1475  cin 3539  wss 3540  Ord word 5639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-tr 4681  df-eprel 4949  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-ord 5643
This theorem is referenced by:  ordelinel  5742  ordelinelOLD  5743  mreexexdOLD  16132
  Copyright terms: Public domain W3C validator