Mathbox for Chen-Pang He < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordtoplem Structured version   Visualization version   GIF version

Theorem ordtoplem 31604
 Description: Membership of the class of successor ordinals. (Contributed by Chen-Pang He, 1-Nov-2015.)
Hypothesis
Ref Expression
ordtoplem.1 ( 𝐴 ∈ On → suc 𝐴𝑆)
Assertion
Ref Expression
ordtoplem (Ord 𝐴 → (𝐴 𝐴𝐴𝑆))

Proof of Theorem ordtoplem
StepHypRef Expression
1 df-ne 2782 . 2 (𝐴 𝐴 ↔ ¬ 𝐴 = 𝐴)
2 ordeleqon 6880 . . . . . 6 (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On))
3 unon 6923 . . . . . . . . 9 On = On
43eqcomi 2619 . . . . . . . 8 On = On
5 id 22 . . . . . . . 8 (𝐴 = On → 𝐴 = On)
6 unieq 4380 . . . . . . . 8 (𝐴 = On → 𝐴 = On)
74, 5, 63eqtr4a 2670 . . . . . . 7 (𝐴 = On → 𝐴 = 𝐴)
87orim2i 539 . . . . . 6 ((𝐴 ∈ On ∨ 𝐴 = On) → (𝐴 ∈ On ∨ 𝐴 = 𝐴))
92, 8sylbi 206 . . . . 5 (Ord 𝐴 → (𝐴 ∈ On ∨ 𝐴 = 𝐴))
109orcomd 402 . . . 4 (Ord 𝐴 → (𝐴 = 𝐴𝐴 ∈ On))
1110ord 391 . . 3 (Ord 𝐴 → (¬ 𝐴 = 𝐴𝐴 ∈ On))
12 orduniorsuc 6922 . . . 4 (Ord 𝐴 → (𝐴 = 𝐴𝐴 = suc 𝐴))
1312ord 391 . . 3 (Ord 𝐴 → (¬ 𝐴 = 𝐴𝐴 = suc 𝐴))
14 onuni 6885 . . . 4 (𝐴 ∈ On → 𝐴 ∈ On)
15 ordtoplem.1 . . . 4 ( 𝐴 ∈ On → suc 𝐴𝑆)
16 eleq1a 2683 . . . 4 (suc 𝐴𝑆 → (𝐴 = suc 𝐴𝐴𝑆))
1714, 15, 163syl 18 . . 3 (𝐴 ∈ On → (𝐴 = suc 𝐴𝐴𝑆))
1811, 13, 17syl6c 68 . 2 (Ord 𝐴 → (¬ 𝐴 = 𝐴𝐴𝑆))
191, 18syl5bi 231 1 (Ord 𝐴 → (𝐴 𝐴𝐴𝑆))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∨ wo 382   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∪ cuni 4372  Ord word 5639  Oncon0 5640  suc csuc 5642 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-tr 4681  df-eprel 4949  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-ord 5643  df-on 5644  df-suc 5646 This theorem is referenced by:  ordtop  31605  ordtopcon  31608  ordtopt0  31611
 Copyright terms: Public domain W3C validator