MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsucuniel Structured version   Visualization version   GIF version

Theorem ordsucuniel 6916
Description: Given an element 𝐴 of the union of an ordinal 𝐵, suc 𝐴 is an element of 𝐵 itself. (Contributed by Scott Fenton, 28-Mar-2012.) (Proof shortened by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
ordsucuniel (Ord 𝐵 → (𝐴 𝐵 ↔ suc 𝐴𝐵))

Proof of Theorem ordsucuniel
StepHypRef Expression
1 orduni 6886 . . 3 (Ord 𝐵 → Ord 𝐵)
2 ordelord 5662 . . . 4 ((Ord 𝐵𝐴 𝐵) → Ord 𝐴)
32ex 449 . . 3 (Ord 𝐵 → (𝐴 𝐵 → Ord 𝐴))
41, 3syl 17 . 2 (Ord 𝐵 → (𝐴 𝐵 → Ord 𝐴))
5 ordelord 5662 . . . 4 ((Ord 𝐵 ∧ suc 𝐴𝐵) → Ord suc 𝐴)
6 ordsuc 6906 . . . 4 (Ord 𝐴 ↔ Ord suc 𝐴)
75, 6sylibr 223 . . 3 ((Ord 𝐵 ∧ suc 𝐴𝐵) → Ord 𝐴)
87ex 449 . 2 (Ord 𝐵 → (suc 𝐴𝐵 → Ord 𝐴))
9 ordsson 6881 . . . . . 6 (Ord 𝐵𝐵 ⊆ On)
10 ordunisssuc 5747 . . . . . 6 ((𝐵 ⊆ On ∧ Ord 𝐴) → ( 𝐵𝐴𝐵 ⊆ suc 𝐴))
119, 10sylan 487 . . . . 5 ((Ord 𝐵 ∧ Ord 𝐴) → ( 𝐵𝐴𝐵 ⊆ suc 𝐴))
12 ordtri1 5673 . . . . . 6 ((Ord 𝐵 ∧ Ord 𝐴) → ( 𝐵𝐴 ↔ ¬ 𝐴 𝐵))
131, 12sylan 487 . . . . 5 ((Ord 𝐵 ∧ Ord 𝐴) → ( 𝐵𝐴 ↔ ¬ 𝐴 𝐵))
14 ordtri1 5673 . . . . . 6 ((Ord 𝐵 ∧ Ord suc 𝐴) → (𝐵 ⊆ suc 𝐴 ↔ ¬ suc 𝐴𝐵))
156, 14sylan2b 491 . . . . 5 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵 ⊆ suc 𝐴 ↔ ¬ suc 𝐴𝐵))
1611, 13, 153bitr3d 297 . . . 4 ((Ord 𝐵 ∧ Ord 𝐴) → (¬ 𝐴 𝐵 ↔ ¬ suc 𝐴𝐵))
1716con4bid 306 . . 3 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐴 𝐵 ↔ suc 𝐴𝐵))
1817ex 449 . 2 (Ord 𝐵 → (Ord 𝐴 → (𝐴 𝐵 ↔ suc 𝐴𝐵)))
194, 8, 18pm5.21ndd 368 1 (Ord 𝐵 → (𝐴 𝐵 ↔ suc 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  wcel 1977  wss 3540   cuni 4372  Ord word 5639  Oncon0 5640  suc csuc 5642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-tr 4681  df-eprel 4949  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-ord 5643  df-on 5644  df-suc 5646
This theorem is referenced by:  dfac12lem1  8848  dfac12lem2  8849  nofulllem5  31105
  Copyright terms: Public domain W3C validator