Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordsuc | Structured version Visualization version GIF version |
Description: The successor of an ordinal class is ordinal. (Contributed by NM, 3-Apr-1995.) |
Ref | Expression |
---|---|
ordsuc | ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elong 5648 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴)) | |
2 | suceloni 6905 | . . . . 5 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) | |
3 | eloni 5650 | . . . . 5 ⊢ (suc 𝐴 ∈ On → Ord suc 𝐴) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝐴 ∈ On → Ord suc 𝐴) |
5 | 1, 4 | syl6bir 243 | . . 3 ⊢ (𝐴 ∈ V → (Ord 𝐴 → Ord suc 𝐴)) |
6 | sucidg 5720 | . . . 4 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
7 | ordelord 5662 | . . . . 5 ⊢ ((Ord suc 𝐴 ∧ 𝐴 ∈ suc 𝐴) → Ord 𝐴) | |
8 | 7 | ex 449 | . . . 4 ⊢ (Ord suc 𝐴 → (𝐴 ∈ suc 𝐴 → Ord 𝐴)) |
9 | 6, 8 | syl5com 31 | . . 3 ⊢ (𝐴 ∈ V → (Ord suc 𝐴 → Ord 𝐴)) |
10 | 5, 9 | impbid 201 | . 2 ⊢ (𝐴 ∈ V → (Ord 𝐴 ↔ Ord suc 𝐴)) |
11 | sucprc 5717 | . . . 4 ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) | |
12 | 11 | eqcomd 2616 | . . 3 ⊢ (¬ 𝐴 ∈ V → 𝐴 = suc 𝐴) |
13 | ordeq 5647 | . . 3 ⊢ (𝐴 = suc 𝐴 → (Ord 𝐴 ↔ Ord suc 𝐴)) | |
14 | 12, 13 | syl 17 | . 2 ⊢ (¬ 𝐴 ∈ V → (Ord 𝐴 ↔ Ord suc 𝐴)) |
15 | 10, 14 | pm2.61i 175 | 1 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 195 = wceq 1475 ∈ wcel 1977 Vcvv 3173 Ord word 5639 Oncon0 5640 suc csuc 5642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-tr 4681 df-eprel 4949 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-ord 5643 df-on 5644 df-suc 5646 |
This theorem is referenced by: ordpwsuc 6907 sucelon 6909 ordsucss 6910 onpsssuc 6911 ordsucelsuc 6914 ordsucsssuc 6915 ordsucuniel 6916 ordsucun 6917 onsucuni2 6926 0elsuc 6927 nlimsucg 6934 limsssuc 6942 php4 8032 cantnflt 8452 fin23lem26 9030 hsmexlem1 9131 onsuct0 31610 |
Copyright terms: Public domain | W3C validator |