MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordpipq Structured version   Visualization version   GIF version

Theorem ordpipq 9643
Description: Ordering of positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ordpipq (⟨𝐴, 𝐵⟩ <pQ𝐶, 𝐷⟩ ↔ (𝐴 ·N 𝐷) <N (𝐶 ·N 𝐵))

Proof of Theorem ordpipq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 4859 . . 3 𝐴, 𝐵⟩ ∈ V
2 opex 4859 . . 3 𝐶, 𝐷⟩ ∈ V
3 eleq1 2676 . . . . . 6 (𝑥 = ⟨𝐴, 𝐵⟩ → (𝑥 ∈ (N × N) ↔ ⟨𝐴, 𝐵⟩ ∈ (N × N)))
43anbi1d 737 . . . . 5 (𝑥 = ⟨𝐴, 𝐵⟩ → ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ↔ (⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N))))
54anbi1d 737 . . . 4 (𝑥 = ⟨𝐴, 𝐵⟩ → (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥))) ↔ ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥)))))
6 fveq2 6103 . . . . . . . 8 (𝑥 = ⟨𝐴, 𝐵⟩ → (1st𝑥) = (1st ‘⟨𝐴, 𝐵⟩))
7 opelxp 5070 . . . . . . . . . 10 (⟨𝐴, 𝐵⟩ ∈ (N × N) ↔ (𝐴N𝐵N))
8 op1stg 7071 . . . . . . . . . 10 ((𝐴N𝐵N) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
97, 8sylbi 206 . . . . . . . . 9 (⟨𝐴, 𝐵⟩ ∈ (N × N) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
109adantr 480 . . . . . . . 8 ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
116, 10sylan9eq 2664 . . . . . . 7 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ (⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N))) → (1st𝑥) = 𝐴)
1211oveq1d 6564 . . . . . 6 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ (⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N))) → ((1st𝑥) ·N (2nd𝑦)) = (𝐴 ·N (2nd𝑦)))
13 fveq2 6103 . . . . . . . 8 (𝑥 = ⟨𝐴, 𝐵⟩ → (2nd𝑥) = (2nd ‘⟨𝐴, 𝐵⟩))
14 op2ndg 7072 . . . . . . . . . 10 ((𝐴N𝐵N) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
157, 14sylbi 206 . . . . . . . . 9 (⟨𝐴, 𝐵⟩ ∈ (N × N) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
1615adantr 480 . . . . . . . 8 ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
1713, 16sylan9eq 2664 . . . . . . 7 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ (⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N))) → (2nd𝑥) = 𝐵)
1817oveq2d 6565 . . . . . 6 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ (⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N))) → ((1st𝑦) ·N (2nd𝑥)) = ((1st𝑦) ·N 𝐵))
1912, 18breq12d 4596 . . . . 5 ((𝑥 = ⟨𝐴, 𝐵⟩ ∧ (⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N))) → (((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥)) ↔ (𝐴 ·N (2nd𝑦)) <N ((1st𝑦) ·N 𝐵)))
2019pm5.32da 671 . . . 4 (𝑥 = ⟨𝐴, 𝐵⟩ → (((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥))) ↔ ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝐴 ·N (2nd𝑦)) <N ((1st𝑦) ·N 𝐵))))
215, 20bitrd 267 . . 3 (𝑥 = ⟨𝐴, 𝐵⟩ → (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥))) ↔ ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝐴 ·N (2nd𝑦)) <N ((1st𝑦) ·N 𝐵))))
22 eleq1 2676 . . . . . 6 (𝑦 = ⟨𝐶, 𝐷⟩ → (𝑦 ∈ (N × N) ↔ ⟨𝐶, 𝐷⟩ ∈ (N × N)))
2322anbi2d 736 . . . . 5 (𝑦 = ⟨𝐶, 𝐷⟩ → ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ↔ (⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N))))
2423anbi1d 737 . . . 4 (𝑦 = ⟨𝐶, 𝐷⟩ → (((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝐴 ·N (2nd𝑦)) <N ((1st𝑦) ·N 𝐵)) ↔ ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N)) ∧ (𝐴 ·N (2nd𝑦)) <N ((1st𝑦) ·N 𝐵))))
25 fveq2 6103 . . . . . . . 8 (𝑦 = ⟨𝐶, 𝐷⟩ → (2nd𝑦) = (2nd ‘⟨𝐶, 𝐷⟩))
26 opelxp 5070 . . . . . . . . . 10 (⟨𝐶, 𝐷⟩ ∈ (N × N) ↔ (𝐶N𝐷N))
27 op2ndg 7072 . . . . . . . . . 10 ((𝐶N𝐷N) → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
2826, 27sylbi 206 . . . . . . . . 9 (⟨𝐶, 𝐷⟩ ∈ (N × N) → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
2928adantl 481 . . . . . . . 8 ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N)) → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
3025, 29sylan9eq 2664 . . . . . . 7 ((𝑦 = ⟨𝐶, 𝐷⟩ ∧ (⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N))) → (2nd𝑦) = 𝐷)
3130oveq2d 6565 . . . . . 6 ((𝑦 = ⟨𝐶, 𝐷⟩ ∧ (⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N))) → (𝐴 ·N (2nd𝑦)) = (𝐴 ·N 𝐷))
32 fveq2 6103 . . . . . . . 8 (𝑦 = ⟨𝐶, 𝐷⟩ → (1st𝑦) = (1st ‘⟨𝐶, 𝐷⟩))
33 op1stg 7071 . . . . . . . . . 10 ((𝐶N𝐷N) → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
3426, 33sylbi 206 . . . . . . . . 9 (⟨𝐶, 𝐷⟩ ∈ (N × N) → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
3534adantl 481 . . . . . . . 8 ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N)) → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
3632, 35sylan9eq 2664 . . . . . . 7 ((𝑦 = ⟨𝐶, 𝐷⟩ ∧ (⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N))) → (1st𝑦) = 𝐶)
3736oveq1d 6564 . . . . . 6 ((𝑦 = ⟨𝐶, 𝐷⟩ ∧ (⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N))) → ((1st𝑦) ·N 𝐵) = (𝐶 ·N 𝐵))
3831, 37breq12d 4596 . . . . 5 ((𝑦 = ⟨𝐶, 𝐷⟩ ∧ (⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N))) → ((𝐴 ·N (2nd𝑦)) <N ((1st𝑦) ·N 𝐵) ↔ (𝐴 ·N 𝐷) <N (𝐶 ·N 𝐵)))
3938pm5.32da 671 . . . 4 (𝑦 = ⟨𝐶, 𝐷⟩ → (((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N)) ∧ (𝐴 ·N (2nd𝑦)) <N ((1st𝑦) ·N 𝐵)) ↔ ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N)) ∧ (𝐴 ·N 𝐷) <N (𝐶 ·N 𝐵))))
4024, 39bitrd 267 . . 3 (𝑦 = ⟨𝐶, 𝐷⟩ → (((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝐴 ·N (2nd𝑦)) <N ((1st𝑦) ·N 𝐵)) ↔ ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N)) ∧ (𝐴 ·N 𝐷) <N (𝐶 ·N 𝐵))))
41 df-ltpq 9611 . . 3 <pQ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥)))}
421, 2, 21, 40, 41brab 4923 . 2 (⟨𝐴, 𝐵⟩ <pQ𝐶, 𝐷⟩ ↔ ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N)) ∧ (𝐴 ·N 𝐷) <N (𝐶 ·N 𝐵)))
43 simpr 476 . . 3 (((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N)) ∧ (𝐴 ·N 𝐷) <N (𝐶 ·N 𝐵)) → (𝐴 ·N 𝐷) <N (𝐶 ·N 𝐵))
44 ltrelpi 9590 . . . . . 6 <N ⊆ (N × N)
4544brel 5090 . . . . 5 ((𝐴 ·N 𝐷) <N (𝐶 ·N 𝐵) → ((𝐴 ·N 𝐷) ∈ N ∧ (𝐶 ·N 𝐵) ∈ N))
46 dmmulpi 9592 . . . . . . 7 dom ·N = (N × N)
47 0npi 9583 . . . . . . 7 ¬ ∅ ∈ N
4846, 47ndmovrcl 6718 . . . . . 6 ((𝐴 ·N 𝐷) ∈ N → (𝐴N𝐷N))
4946, 47ndmovrcl 6718 . . . . . 6 ((𝐶 ·N 𝐵) ∈ N → (𝐶N𝐵N))
5048, 49anim12i 588 . . . . 5 (((𝐴 ·N 𝐷) ∈ N ∧ (𝐶 ·N 𝐵) ∈ N) → ((𝐴N𝐷N) ∧ (𝐶N𝐵N)))
51 opelxpi 5072 . . . . . . 7 ((𝐴N𝐵N) → ⟨𝐴, 𝐵⟩ ∈ (N × N))
5251ad2ant2rl 781 . . . . . 6 (((𝐴N𝐷N) ∧ (𝐶N𝐵N)) → ⟨𝐴, 𝐵⟩ ∈ (N × N))
53 simprl 790 . . . . . . 7 (((𝐴N𝐷N) ∧ (𝐶N𝐵N)) → 𝐶N)
54 simplr 788 . . . . . . 7 (((𝐴N𝐷N) ∧ (𝐶N𝐵N)) → 𝐷N)
55 opelxpi 5072 . . . . . . 7 ((𝐶N𝐷N) → ⟨𝐶, 𝐷⟩ ∈ (N × N))
5653, 54, 55syl2anc 691 . . . . . 6 (((𝐴N𝐷N) ∧ (𝐶N𝐵N)) → ⟨𝐶, 𝐷⟩ ∈ (N × N))
5752, 56jca 553 . . . . 5 (((𝐴N𝐷N) ∧ (𝐶N𝐵N)) → (⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N)))
5845, 50, 573syl 18 . . . 4 ((𝐴 ·N 𝐷) <N (𝐶 ·N 𝐵) → (⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N)))
5958ancri 573 . . 3 ((𝐴 ·N 𝐷) <N (𝐶 ·N 𝐵) → ((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N)) ∧ (𝐴 ·N 𝐷) <N (𝐶 ·N 𝐵)))
6043, 59impbii 198 . 2 (((⟨𝐴, 𝐵⟩ ∈ (N × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (N × N)) ∧ (𝐴 ·N 𝐷) <N (𝐶 ·N 𝐵)) ↔ (𝐴 ·N 𝐷) <N (𝐶 ·N 𝐵))
6142, 60bitri 263 1 (⟨𝐴, 𝐵⟩ <pQ𝐶, 𝐷⟩ ↔ (𝐴 ·N 𝐷) <N (𝐶 ·N 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383   = wceq 1475  wcel 1977  cop 4131   class class class wbr 4583   × cxp 5036  cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  Ncnpi 9545   ·N cmi 9547   <N clti 9548   <pQ cltpq 9551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-omul 7452  df-ni 9573  df-mi 9575  df-lti 9576  df-ltpq 9611
This theorem is referenced by:  ordpinq  9644  lterpq  9671  ltanq  9672  ltmnq  9673  1lt2nq  9674
  Copyright terms: Public domain W3C validator