Step | Hyp | Ref
| Expression |
1 | | opex 4859 |
. . 3
⊢
〈𝐴, 𝐵〉 ∈ V |
2 | | opex 4859 |
. . 3
⊢
〈𝐶, 𝐷〉 ∈ V |
3 | | eleq1 2676 |
. . . . . 6
⊢ (𝑥 = 〈𝐴, 𝐵〉 → (𝑥 ∈ (N ×
N) ↔ 〈𝐴, 𝐵〉 ∈ (N ×
N))) |
4 | 3 | anbi1d 737 |
. . . . 5
⊢ (𝑥 = 〈𝐴, 𝐵〉 → ((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) ↔ (〈𝐴, 𝐵〉 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)))) |
5 | 4 | anbi1d 737 |
. . . 4
⊢ (𝑥 = 〈𝐴, 𝐵〉 → (((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) ∧ ((1st
‘𝑥)
·N (2nd ‘𝑦)) <N
((1st ‘𝑦)
·N (2nd ‘𝑥))) ↔ ((〈𝐴, 𝐵〉 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) ∧ ((1st
‘𝑥)
·N (2nd ‘𝑦)) <N
((1st ‘𝑦)
·N (2nd ‘𝑥))))) |
6 | | fveq2 6103 |
. . . . . . . 8
⊢ (𝑥 = 〈𝐴, 𝐵〉 → (1st ‘𝑥) = (1st
‘〈𝐴, 𝐵〉)) |
7 | | opelxp 5070 |
. . . . . . . . . 10
⊢
(〈𝐴, 𝐵〉 ∈ (N
× N) ↔ (𝐴 ∈ N ∧ 𝐵 ∈
N)) |
8 | | op1stg 7071 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ N ∧
𝐵 ∈ N)
→ (1st ‘〈𝐴, 𝐵〉) = 𝐴) |
9 | 7, 8 | sylbi 206 |
. . . . . . . . 9
⊢
(〈𝐴, 𝐵〉 ∈ (N
× N) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) |
10 | 9 | adantr 480 |
. . . . . . . 8
⊢
((〈𝐴, 𝐵〉 ∈ (N
× N) ∧ 𝑦 ∈ (N ×
N)) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) |
11 | 6, 10 | sylan9eq 2664 |
. . . . . . 7
⊢ ((𝑥 = 〈𝐴, 𝐵〉 ∧ (〈𝐴, 𝐵〉 ∈ (N ×
N) ∧ 𝑦
∈ (N × N))) → (1st
‘𝑥) = 𝐴) |
12 | 11 | oveq1d 6564 |
. . . . . 6
⊢ ((𝑥 = 〈𝐴, 𝐵〉 ∧ (〈𝐴, 𝐵〉 ∈ (N ×
N) ∧ 𝑦
∈ (N × N))) → ((1st
‘𝑥)
·N (2nd ‘𝑦)) = (𝐴 ·N
(2nd ‘𝑦))) |
13 | | fveq2 6103 |
. . . . . . . 8
⊢ (𝑥 = 〈𝐴, 𝐵〉 → (2nd ‘𝑥) = (2nd
‘〈𝐴, 𝐵〉)) |
14 | | op2ndg 7072 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ N ∧
𝐵 ∈ N)
→ (2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
15 | 7, 14 | sylbi 206 |
. . . . . . . . 9
⊢
(〈𝐴, 𝐵〉 ∈ (N
× N) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
16 | 15 | adantr 480 |
. . . . . . . 8
⊢
((〈𝐴, 𝐵〉 ∈ (N
× N) ∧ 𝑦 ∈ (N ×
N)) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
17 | 13, 16 | sylan9eq 2664 |
. . . . . . 7
⊢ ((𝑥 = 〈𝐴, 𝐵〉 ∧ (〈𝐴, 𝐵〉 ∈ (N ×
N) ∧ 𝑦
∈ (N × N))) → (2nd
‘𝑥) = 𝐵) |
18 | 17 | oveq2d 6565 |
. . . . . 6
⊢ ((𝑥 = 〈𝐴, 𝐵〉 ∧ (〈𝐴, 𝐵〉 ∈ (N ×
N) ∧ 𝑦
∈ (N × N))) → ((1st
‘𝑦)
·N (2nd ‘𝑥)) = ((1st ‘𝑦)
·N 𝐵)) |
19 | 12, 18 | breq12d 4596 |
. . . . 5
⊢ ((𝑥 = 〈𝐴, 𝐵〉 ∧ (〈𝐴, 𝐵〉 ∈ (N ×
N) ∧ 𝑦
∈ (N × N))) → (((1st
‘𝑥)
·N (2nd ‘𝑦)) <N
((1st ‘𝑦)
·N (2nd ‘𝑥)) ↔ (𝐴 ·N
(2nd ‘𝑦))
<N ((1st ‘𝑦) ·N 𝐵))) |
20 | 19 | pm5.32da 671 |
. . . 4
⊢ (𝑥 = 〈𝐴, 𝐵〉 → (((〈𝐴, 𝐵〉 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) ∧ ((1st
‘𝑥)
·N (2nd ‘𝑦)) <N
((1st ‘𝑦)
·N (2nd ‘𝑥))) ↔ ((〈𝐴, 𝐵〉 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) ∧ (𝐴 ·N
(2nd ‘𝑦))
<N ((1st ‘𝑦) ·N 𝐵)))) |
21 | 5, 20 | bitrd 267 |
. . 3
⊢ (𝑥 = 〈𝐴, 𝐵〉 → (((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) ∧ ((1st
‘𝑥)
·N (2nd ‘𝑦)) <N
((1st ‘𝑦)
·N (2nd ‘𝑥))) ↔ ((〈𝐴, 𝐵〉 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) ∧ (𝐴 ·N
(2nd ‘𝑦))
<N ((1st ‘𝑦) ·N 𝐵)))) |
22 | | eleq1 2676 |
. . . . . 6
⊢ (𝑦 = 〈𝐶, 𝐷〉 → (𝑦 ∈ (N ×
N) ↔ 〈𝐶, 𝐷〉 ∈ (N ×
N))) |
23 | 22 | anbi2d 736 |
. . . . 5
⊢ (𝑦 = 〈𝐶, 𝐷〉 → ((〈𝐴, 𝐵〉 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) ↔ (〈𝐴, 𝐵〉 ∈ (N ×
N) ∧ 〈𝐶, 𝐷〉 ∈ (N ×
N)))) |
24 | 23 | anbi1d 737 |
. . . 4
⊢ (𝑦 = 〈𝐶, 𝐷〉 → (((〈𝐴, 𝐵〉 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) ∧ (𝐴 ·N
(2nd ‘𝑦))
<N ((1st ‘𝑦) ·N 𝐵)) ↔ ((〈𝐴, 𝐵〉 ∈ (N ×
N) ∧ 〈𝐶, 𝐷〉 ∈ (N ×
N)) ∧ (𝐴
·N (2nd ‘𝑦)) <N
((1st ‘𝑦)
·N 𝐵)))) |
25 | | fveq2 6103 |
. . . . . . . 8
⊢ (𝑦 = 〈𝐶, 𝐷〉 → (2nd ‘𝑦) = (2nd
‘〈𝐶, 𝐷〉)) |
26 | | opelxp 5070 |
. . . . . . . . . 10
⊢
(〈𝐶, 𝐷〉 ∈ (N
× N) ↔ (𝐶 ∈ N ∧ 𝐷 ∈
N)) |
27 | | op2ndg 7072 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ N ∧
𝐷 ∈ N)
→ (2nd ‘〈𝐶, 𝐷〉) = 𝐷) |
28 | 26, 27 | sylbi 206 |
. . . . . . . . 9
⊢
(〈𝐶, 𝐷〉 ∈ (N
× N) → (2nd ‘〈𝐶, 𝐷〉) = 𝐷) |
29 | 28 | adantl 481 |
. . . . . . . 8
⊢
((〈𝐴, 𝐵〉 ∈ (N
× N) ∧ 〈𝐶, 𝐷〉 ∈ (N ×
N)) → (2nd ‘〈𝐶, 𝐷〉) = 𝐷) |
30 | 25, 29 | sylan9eq 2664 |
. . . . . . 7
⊢ ((𝑦 = 〈𝐶, 𝐷〉 ∧ (〈𝐴, 𝐵〉 ∈ (N ×
N) ∧ 〈𝐶, 𝐷〉 ∈ (N ×
N))) → (2nd ‘𝑦) = 𝐷) |
31 | 30 | oveq2d 6565 |
. . . . . 6
⊢ ((𝑦 = 〈𝐶, 𝐷〉 ∧ (〈𝐴, 𝐵〉 ∈ (N ×
N) ∧ 〈𝐶, 𝐷〉 ∈ (N ×
N))) → (𝐴 ·N
(2nd ‘𝑦))
= (𝐴
·N 𝐷)) |
32 | | fveq2 6103 |
. . . . . . . 8
⊢ (𝑦 = 〈𝐶, 𝐷〉 → (1st ‘𝑦) = (1st
‘〈𝐶, 𝐷〉)) |
33 | | op1stg 7071 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ N ∧
𝐷 ∈ N)
→ (1st ‘〈𝐶, 𝐷〉) = 𝐶) |
34 | 26, 33 | sylbi 206 |
. . . . . . . . 9
⊢
(〈𝐶, 𝐷〉 ∈ (N
× N) → (1st ‘〈𝐶, 𝐷〉) = 𝐶) |
35 | 34 | adantl 481 |
. . . . . . . 8
⊢
((〈𝐴, 𝐵〉 ∈ (N
× N) ∧ 〈𝐶, 𝐷〉 ∈ (N ×
N)) → (1st ‘〈𝐶, 𝐷〉) = 𝐶) |
36 | 32, 35 | sylan9eq 2664 |
. . . . . . 7
⊢ ((𝑦 = 〈𝐶, 𝐷〉 ∧ (〈𝐴, 𝐵〉 ∈ (N ×
N) ∧ 〈𝐶, 𝐷〉 ∈ (N ×
N))) → (1st ‘𝑦) = 𝐶) |
37 | 36 | oveq1d 6564 |
. . . . . 6
⊢ ((𝑦 = 〈𝐶, 𝐷〉 ∧ (〈𝐴, 𝐵〉 ∈ (N ×
N) ∧ 〈𝐶, 𝐷〉 ∈ (N ×
N))) → ((1st ‘𝑦) ·N 𝐵) = (𝐶 ·N 𝐵)) |
38 | 31, 37 | breq12d 4596 |
. . . . 5
⊢ ((𝑦 = 〈𝐶, 𝐷〉 ∧ (〈𝐴, 𝐵〉 ∈ (N ×
N) ∧ 〈𝐶, 𝐷〉 ∈ (N ×
N))) → ((𝐴 ·N
(2nd ‘𝑦))
<N ((1st ‘𝑦) ·N 𝐵) ↔ (𝐴 ·N 𝐷) <N
(𝐶
·N 𝐵))) |
39 | 38 | pm5.32da 671 |
. . . 4
⊢ (𝑦 = 〈𝐶, 𝐷〉 → (((〈𝐴, 𝐵〉 ∈ (N ×
N) ∧ 〈𝐶, 𝐷〉 ∈ (N ×
N)) ∧ (𝐴
·N (2nd ‘𝑦)) <N
((1st ‘𝑦)
·N 𝐵)) ↔ ((〈𝐴, 𝐵〉 ∈ (N ×
N) ∧ 〈𝐶, 𝐷〉 ∈ (N ×
N)) ∧ (𝐴
·N 𝐷) <N (𝐶
·N 𝐵)))) |
40 | 24, 39 | bitrd 267 |
. . 3
⊢ (𝑦 = 〈𝐶, 𝐷〉 → (((〈𝐴, 𝐵〉 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) ∧ (𝐴 ·N
(2nd ‘𝑦))
<N ((1st ‘𝑦) ·N 𝐵)) ↔ ((〈𝐴, 𝐵〉 ∈ (N ×
N) ∧ 〈𝐶, 𝐷〉 ∈ (N ×
N)) ∧ (𝐴
·N 𝐷) <N (𝐶
·N 𝐵)))) |
41 | | df-ltpq 9611 |
. . 3
⊢
<pQ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) ∧ ((1st
‘𝑥)
·N (2nd ‘𝑦)) <N
((1st ‘𝑦)
·N (2nd ‘𝑥)))} |
42 | 1, 2, 21, 40, 41 | brab 4923 |
. 2
⊢
(〈𝐴, 𝐵〉
<pQ 〈𝐶, 𝐷〉 ↔ ((〈𝐴, 𝐵〉 ∈ (N ×
N) ∧ 〈𝐶, 𝐷〉 ∈ (N ×
N)) ∧ (𝐴
·N 𝐷) <N (𝐶
·N 𝐵))) |
43 | | simpr 476 |
. . 3
⊢
(((〈𝐴, 𝐵〉 ∈ (N
× N) ∧ 〈𝐶, 𝐷〉 ∈ (N ×
N)) ∧ (𝐴
·N 𝐷) <N (𝐶
·N 𝐵)) → (𝐴 ·N 𝐷) <N
(𝐶
·N 𝐵)) |
44 | | ltrelpi 9590 |
. . . . . 6
⊢
<N ⊆ (N ×
N) |
45 | 44 | brel 5090 |
. . . . 5
⊢ ((𝐴
·N 𝐷) <N (𝐶
·N 𝐵) → ((𝐴 ·N 𝐷) ∈ N ∧
(𝐶
·N 𝐵) ∈ N)) |
46 | | dmmulpi 9592 |
. . . . . . 7
⊢ dom
·N = (N ×
N) |
47 | | 0npi 9583 |
. . . . . . 7
⊢ ¬
∅ ∈ N |
48 | 46, 47 | ndmovrcl 6718 |
. . . . . 6
⊢ ((𝐴
·N 𝐷) ∈ N → (𝐴 ∈ N ∧
𝐷 ∈
N)) |
49 | 46, 47 | ndmovrcl 6718 |
. . . . . 6
⊢ ((𝐶
·N 𝐵) ∈ N → (𝐶 ∈ N ∧
𝐵 ∈
N)) |
50 | 48, 49 | anim12i 588 |
. . . . 5
⊢ (((𝐴
·N 𝐷) ∈ N ∧ (𝐶
·N 𝐵) ∈ N) → ((𝐴 ∈ N ∧
𝐷 ∈ N)
∧ (𝐶 ∈
N ∧ 𝐵
∈ N))) |
51 | | opelxpi 5072 |
. . . . . . 7
⊢ ((𝐴 ∈ N ∧
𝐵 ∈ N)
→ 〈𝐴, 𝐵〉 ∈ (N
× N)) |
52 | 51 | ad2ant2rl 781 |
. . . . . 6
⊢ (((𝐴 ∈ N ∧
𝐷 ∈ N)
∧ (𝐶 ∈
N ∧ 𝐵
∈ N)) → 〈𝐴, 𝐵〉 ∈ (N ×
N)) |
53 | | simprl 790 |
. . . . . . 7
⊢ (((𝐴 ∈ N ∧
𝐷 ∈ N)
∧ (𝐶 ∈
N ∧ 𝐵
∈ N)) → 𝐶 ∈ N) |
54 | | simplr 788 |
. . . . . . 7
⊢ (((𝐴 ∈ N ∧
𝐷 ∈ N)
∧ (𝐶 ∈
N ∧ 𝐵
∈ N)) → 𝐷 ∈ N) |
55 | | opelxpi 5072 |
. . . . . . 7
⊢ ((𝐶 ∈ N ∧
𝐷 ∈ N)
→ 〈𝐶, 𝐷〉 ∈ (N
× N)) |
56 | 53, 54, 55 | syl2anc 691 |
. . . . . 6
⊢ (((𝐴 ∈ N ∧
𝐷 ∈ N)
∧ (𝐶 ∈
N ∧ 𝐵
∈ N)) → 〈𝐶, 𝐷〉 ∈ (N ×
N)) |
57 | 52, 56 | jca 553 |
. . . . 5
⊢ (((𝐴 ∈ N ∧
𝐷 ∈ N)
∧ (𝐶 ∈
N ∧ 𝐵
∈ N)) → (〈𝐴, 𝐵〉 ∈ (N ×
N) ∧ 〈𝐶, 𝐷〉 ∈ (N ×
N))) |
58 | 45, 50, 57 | 3syl 18 |
. . . 4
⊢ ((𝐴
·N 𝐷) <N (𝐶
·N 𝐵) → (〈𝐴, 𝐵〉 ∈ (N ×
N) ∧ 〈𝐶, 𝐷〉 ∈ (N ×
N))) |
59 | 58 | ancri 573 |
. . 3
⊢ ((𝐴
·N 𝐷) <N (𝐶
·N 𝐵) → ((〈𝐴, 𝐵〉 ∈ (N ×
N) ∧ 〈𝐶, 𝐷〉 ∈ (N ×
N)) ∧ (𝐴
·N 𝐷) <N (𝐶
·N 𝐵))) |
60 | 43, 59 | impbii 198 |
. 2
⊢
(((〈𝐴, 𝐵〉 ∈ (N
× N) ∧ 〈𝐶, 𝐷〉 ∈ (N ×
N)) ∧ (𝐴
·N 𝐷) <N (𝐶
·N 𝐵)) ↔ (𝐴 ·N 𝐷) <N
(𝐶
·N 𝐵)) |
61 | 42, 60 | bitri 263 |
1
⊢
(〈𝐴, 𝐵〉
<pQ 〈𝐶, 𝐷〉 ↔ (𝐴 ·N 𝐷) <N
(𝐶
·N 𝐵)) |