Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orddif | Structured version Visualization version GIF version |
Description: Ordinal derived from its successor. (Contributed by NM, 20-May-1998.) |
Ref | Expression |
---|---|
orddif | ⊢ (Ord 𝐴 → 𝐴 = (suc 𝐴 ∖ {𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orddisj 5679 | . 2 ⊢ (Ord 𝐴 → (𝐴 ∩ {𝐴}) = ∅) | |
2 | disj3 3973 | . . 3 ⊢ ((𝐴 ∩ {𝐴}) = ∅ ↔ 𝐴 = (𝐴 ∖ {𝐴})) | |
3 | df-suc 5646 | . . . . . 6 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
4 | 3 | difeq1i 3686 | . . . . 5 ⊢ (suc 𝐴 ∖ {𝐴}) = ((𝐴 ∪ {𝐴}) ∖ {𝐴}) |
5 | difun2 4000 | . . . . 5 ⊢ ((𝐴 ∪ {𝐴}) ∖ {𝐴}) = (𝐴 ∖ {𝐴}) | |
6 | 4, 5 | eqtri 2632 | . . . 4 ⊢ (suc 𝐴 ∖ {𝐴}) = (𝐴 ∖ {𝐴}) |
7 | 6 | eqeq2i 2622 | . . 3 ⊢ (𝐴 = (suc 𝐴 ∖ {𝐴}) ↔ 𝐴 = (𝐴 ∖ {𝐴})) |
8 | 2, 7 | bitr4i 266 | . 2 ⊢ ((𝐴 ∩ {𝐴}) = ∅ ↔ 𝐴 = (suc 𝐴 ∖ {𝐴})) |
9 | 1, 8 | sylib 207 | 1 ⊢ (Ord 𝐴 → 𝐴 = (suc 𝐴 ∖ {𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∖ cdif 3537 ∪ cun 3538 ∩ cin 3539 ∅c0 3874 {csn 4125 Ord word 5639 suc csuc 5642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-br 4584 df-opab 4644 df-eprel 4949 df-fr 4997 df-we 4999 df-ord 5643 df-suc 5646 |
This theorem is referenced by: phplem3 8026 phplem4 8027 pssnn 8063 |
Copyright terms: Public domain | W3C validator |