Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > or3di | Structured version Visualization version GIF version |
Description: Distributive law for disjunction. (Contributed by Thierry Arnoux, 3-Jul-2017.) |
Ref | Expression |
---|---|
or3di | ⊢ ((𝜑 ∨ (𝜓 ∧ 𝜒 ∧ 𝜏)) ↔ ((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒) ∧ (𝜑 ∨ 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1033 | . . . 4 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) ↔ ((𝜓 ∧ 𝜒) ∧ 𝜏)) | |
2 | 1 | orbi2i 540 | . . 3 ⊢ ((𝜑 ∨ (𝜓 ∧ 𝜒 ∧ 𝜏)) ↔ (𝜑 ∨ ((𝜓 ∧ 𝜒) ∧ 𝜏))) |
3 | ordi 904 | . . 3 ⊢ ((𝜑 ∨ ((𝜓 ∧ 𝜒) ∧ 𝜏)) ↔ ((𝜑 ∨ (𝜓 ∧ 𝜒)) ∧ (𝜑 ∨ 𝜏))) | |
4 | ordi 904 | . . . 4 ⊢ ((𝜑 ∨ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒))) | |
5 | 4 | anbi1i 727 | . . 3 ⊢ (((𝜑 ∨ (𝜓 ∧ 𝜒)) ∧ (𝜑 ∨ 𝜏)) ↔ (((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒)) ∧ (𝜑 ∨ 𝜏))) |
6 | 2, 3, 5 | 3bitri 285 | . 2 ⊢ ((𝜑 ∨ (𝜓 ∧ 𝜒 ∧ 𝜏)) ↔ (((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒)) ∧ (𝜑 ∨ 𝜏))) |
7 | df-3an 1033 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒) ∧ (𝜑 ∨ 𝜏)) ↔ (((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒)) ∧ (𝜑 ∨ 𝜏))) | |
8 | 6, 7 | bitr4i 266 | 1 ⊢ ((𝜑 ∨ (𝜓 ∧ 𝜒 ∧ 𝜏)) ↔ ((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒) ∧ (𝜑 ∨ 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∨ wo 382 ∧ wa 383 ∧ w3a 1031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 |
This theorem is referenced by: or3dir 28692 |
Copyright terms: Public domain | W3C validator |