MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opprringb Structured version   Visualization version   GIF version

Theorem opprringb 18455
Description: Bidirectional form of opprring 18454. (Contributed by Mario Carneiro, 6-Dec-2014.)
Hypothesis
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
Assertion
Ref Expression
opprringb (𝑅 ∈ Ring ↔ 𝑂 ∈ Ring)

Proof of Theorem opprringb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprbas.1 . . 3 𝑂 = (oppr𝑅)
21opprring 18454 . 2 (𝑅 ∈ Ring → 𝑂 ∈ Ring)
3 eqid 2610 . . . 4 (oppr𝑂) = (oppr𝑂)
43opprring 18454 . . 3 (𝑂 ∈ Ring → (oppr𝑂) ∈ Ring)
5 eqidd 2611 . . . . 5 (⊤ → (Base‘𝑅) = (Base‘𝑅))
6 eqid 2610 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
71, 6opprbas 18452 . . . . . . 7 (Base‘𝑅) = (Base‘𝑂)
83, 7opprbas 18452 . . . . . 6 (Base‘𝑅) = (Base‘(oppr𝑂))
98a1i 11 . . . . 5 (⊤ → (Base‘𝑅) = (Base‘(oppr𝑂)))
10 eqid 2610 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
111, 10oppradd 18453 . . . . . . . 8 (+g𝑅) = (+g𝑂)
123, 11oppradd 18453 . . . . . . 7 (+g𝑅) = (+g‘(oppr𝑂))
1312oveqi 6562 . . . . . 6 (𝑥(+g𝑅)𝑦) = (𝑥(+g‘(oppr𝑂))𝑦)
1413a1i 11 . . . . 5 ((⊤ ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g𝑅)𝑦) = (𝑥(+g‘(oppr𝑂))𝑦))
15 eqid 2610 . . . . . . . 8 (.r𝑂) = (.r𝑂)
16 eqid 2610 . . . . . . . 8 (.r‘(oppr𝑂)) = (.r‘(oppr𝑂))
177, 15, 3, 16opprmul 18449 . . . . . . 7 (𝑥(.r‘(oppr𝑂))𝑦) = (𝑦(.r𝑂)𝑥)
18 eqid 2610 . . . . . . . 8 (.r𝑅) = (.r𝑅)
196, 18, 1, 15opprmul 18449 . . . . . . 7 (𝑦(.r𝑂)𝑥) = (𝑥(.r𝑅)𝑦)
2017, 19eqtr2i 2633 . . . . . 6 (𝑥(.r𝑅)𝑦) = (𝑥(.r‘(oppr𝑂))𝑦)
2120a1i 11 . . . . 5 ((⊤ ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r𝑅)𝑦) = (𝑥(.r‘(oppr𝑂))𝑦))
225, 9, 14, 21ringpropd 18405 . . . 4 (⊤ → (𝑅 ∈ Ring ↔ (oppr𝑂) ∈ Ring))
2322trud 1484 . . 3 (𝑅 ∈ Ring ↔ (oppr𝑂) ∈ Ring)
244, 23sylibr 223 . 2 (𝑂 ∈ Ring → 𝑅 ∈ Ring)
252, 24impbii 198 1 (𝑅 ∈ Ring ↔ 𝑂 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383   = wceq 1475  wtru 1476  wcel 1977  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  .rcmulr 15769  Ringcrg 18370  opprcoppr 18445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-mulr 15782  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446
This theorem is referenced by:  opprdrng  18594  opprsubrg  18624  rhmopp  29150
  Copyright terms: Public domain W3C validator