MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppgsubm Structured version   Visualization version   GIF version

Theorem oppgsubm 17615
Description: Being a submonoid is a symmetric property. (Contributed by Mario Carneiro, 17-Sep-2015.)
Hypothesis
Ref Expression
oppggic.o 𝑂 = (oppg𝐺)
Assertion
Ref Expression
oppgsubm (SubMnd‘𝐺) = (SubMnd‘𝑂)

Proof of Theorem oppgsubm
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submrcl 17169 . . 3 (𝑥 ∈ (SubMnd‘𝐺) → 𝐺 ∈ Mnd)
2 submrcl 17169 . . . 4 (𝑥 ∈ (SubMnd‘𝑂) → 𝑂 ∈ Mnd)
3 oppggic.o . . . . 5 𝑂 = (oppg𝐺)
43oppgmndb 17608 . . . 4 (𝐺 ∈ Mnd ↔ 𝑂 ∈ Mnd)
52, 4sylibr 223 . . 3 (𝑥 ∈ (SubMnd‘𝑂) → 𝐺 ∈ Mnd)
6 ralcom 3079 . . . . . . 7 (∀𝑦𝑥𝑧𝑥 (𝑦(+g𝐺)𝑧) ∈ 𝑥 ↔ ∀𝑧𝑥𝑦𝑥 (𝑦(+g𝐺)𝑧) ∈ 𝑥)
7 eqid 2610 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
8 eqid 2610 . . . . . . . . . 10 (+g𝑂) = (+g𝑂)
97, 3, 8oppgplus 17602 . . . . . . . . 9 (𝑧(+g𝑂)𝑦) = (𝑦(+g𝐺)𝑧)
109eleq1i 2679 . . . . . . . 8 ((𝑧(+g𝑂)𝑦) ∈ 𝑥 ↔ (𝑦(+g𝐺)𝑧) ∈ 𝑥)
11102ralbii 2964 . . . . . . 7 (∀𝑧𝑥𝑦𝑥 (𝑧(+g𝑂)𝑦) ∈ 𝑥 ↔ ∀𝑧𝑥𝑦𝑥 (𝑦(+g𝐺)𝑧) ∈ 𝑥)
126, 11bitr4i 266 . . . . . 6 (∀𝑦𝑥𝑧𝑥 (𝑦(+g𝐺)𝑧) ∈ 𝑥 ↔ ∀𝑧𝑥𝑦𝑥 (𝑧(+g𝑂)𝑦) ∈ 𝑥)
13123anbi3i 1248 . . . . 5 ((𝑥 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑦(+g𝐺)𝑧) ∈ 𝑥) ↔ (𝑥 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑥 ∧ ∀𝑧𝑥𝑦𝑥 (𝑧(+g𝑂)𝑦) ∈ 𝑥))
1413a1i 11 . . . 4 (𝐺 ∈ Mnd → ((𝑥 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑦(+g𝐺)𝑧) ∈ 𝑥) ↔ (𝑥 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑥 ∧ ∀𝑧𝑥𝑦𝑥 (𝑧(+g𝑂)𝑦) ∈ 𝑥)))
15 eqid 2610 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
16 eqid 2610 . . . . 5 (0g𝐺) = (0g𝐺)
1715, 16, 7issubm 17170 . . . 4 (𝐺 ∈ Mnd → (𝑥 ∈ (SubMnd‘𝐺) ↔ (𝑥 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑦(+g𝐺)𝑧) ∈ 𝑥)))
183, 15oppgbas 17604 . . . . . 6 (Base‘𝐺) = (Base‘𝑂)
193, 16oppgid 17609 . . . . . 6 (0g𝐺) = (0g𝑂)
2018, 19, 8issubm 17170 . . . . 5 (𝑂 ∈ Mnd → (𝑥 ∈ (SubMnd‘𝑂) ↔ (𝑥 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑥 ∧ ∀𝑧𝑥𝑦𝑥 (𝑧(+g𝑂)𝑦) ∈ 𝑥)))
214, 20sylbi 206 . . . 4 (𝐺 ∈ Mnd → (𝑥 ∈ (SubMnd‘𝑂) ↔ (𝑥 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑥 ∧ ∀𝑧𝑥𝑦𝑥 (𝑧(+g𝑂)𝑦) ∈ 𝑥)))
2214, 17, 213bitr4d 299 . . 3 (𝐺 ∈ Mnd → (𝑥 ∈ (SubMnd‘𝐺) ↔ 𝑥 ∈ (SubMnd‘𝑂)))
231, 5, 22pm5.21nii 367 . 2 (𝑥 ∈ (SubMnd‘𝐺) ↔ 𝑥 ∈ (SubMnd‘𝑂))
2423eqriv 2607 1 (SubMnd‘𝐺) = (SubMnd‘𝑂)
Colors of variables: wff setvar class
Syntax hints:  wb 195  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wss 3540  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  0gc0g 15923  Mndcmnd 17117  SubMndcsubmnd 17157  oppgcoppg 17598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-oppg 17599
This theorem is referenced by:  oppgsubg  17616  gsumzoppg  18167
  Copyright terms: Public domain W3C validator