Step | Hyp | Ref
| Expression |
1 | | eqid 2610 |
. . . . . 6
⊢
(Base‘𝐶) =
(Base‘𝐶) |
2 | | eqid 2610 |
. . . . . 6
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
3 | | eqid 2610 |
. . . . . 6
⊢
(comp‘𝐶) =
(comp‘𝐶) |
4 | | eqid 2610 |
. . . . . 6
⊢
(comp‘𝐷) =
(comp‘𝐷) |
5 | | oppchomfpropd.1 |
. . . . . . 7
⊢ (𝜑 → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
6 | 5 | ad2antrr 758 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
7 | | oppccomfpropd.1 |
. . . . . . 7
⊢ (𝜑 →
(compf‘𝐶) = (compf‘𝐷)) |
8 | 7 | ad2antrr 758 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) →
(compf‘𝐶) = (compf‘𝐷)) |
9 | | simplr3 1098 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → 𝑧 ∈ (Base‘𝐶)) |
10 | | simplr2 1097 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → 𝑦 ∈ (Base‘𝐶)) |
11 | | simplr1 1096 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → 𝑥 ∈ (Base‘𝐶)) |
12 | | simprr 792 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧)) |
13 | | eqid 2610 |
. . . . . . . 8
⊢
(oppCat‘𝐶) =
(oppCat‘𝐶) |
14 | 2, 13 | oppchom 16198 |
. . . . . . 7
⊢ (𝑦(Hom ‘(oppCat‘𝐶))𝑧) = (𝑧(Hom ‘𝐶)𝑦) |
15 | 12, 14 | syl6eleq 2698 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑦)) |
16 | | simprl 790 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → 𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦)) |
17 | 2, 13 | oppchom 16198 |
. . . . . . 7
⊢ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) = (𝑦(Hom ‘𝐶)𝑥) |
18 | 16, 17 | syl6eleq 2698 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) |
19 | 1, 2, 3, 4, 6, 8, 9, 10, 11, 15, 18 | comfeqval 16191 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → (𝑓(〈𝑧, 𝑦〉(comp‘𝐶)𝑥)𝑔) = (𝑓(〈𝑧, 𝑦〉(comp‘𝐷)𝑥)𝑔)) |
20 | 1, 3, 13, 11, 10, 9 | oppcco 16200 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝐶))𝑧)𝑓) = (𝑓(〈𝑧, 𝑦〉(comp‘𝐶)𝑥)𝑔)) |
21 | | eqid 2610 |
. . . . . 6
⊢
(Base‘𝐷) =
(Base‘𝐷) |
22 | | eqid 2610 |
. . . . . 6
⊢
(oppCat‘𝐷) =
(oppCat‘𝐷) |
23 | 5 | homfeqbas 16179 |
. . . . . . . 8
⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
24 | 23 | ad2antrr 758 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → (Base‘𝐶) = (Base‘𝐷)) |
25 | 11, 24 | eleqtrd 2690 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → 𝑥 ∈ (Base‘𝐷)) |
26 | 10, 24 | eleqtrd 2690 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → 𝑦 ∈ (Base‘𝐷)) |
27 | 9, 24 | eleqtrd 2690 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → 𝑧 ∈ (Base‘𝐷)) |
28 | 21, 4, 22, 25, 26, 27 | oppcco 16200 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝐷))𝑧)𝑓) = (𝑓(〈𝑧, 𝑦〉(comp‘𝐷)𝑥)𝑔)) |
29 | 19, 20, 28 | 3eqtr4d 2654 |
. . . 4
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧))) → (𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝐶))𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝐷))𝑧)𝑓)) |
30 | 29 | ralrimivva 2954 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → ∀𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦)∀𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝐶))𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝐷))𝑧)𝑓)) |
31 | 30 | ralrimivvva 2955 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦)∀𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝐶))𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝐷))𝑧)𝑓)) |
32 | | eqid 2610 |
. . 3
⊢
(comp‘(oppCat‘𝐶)) = (comp‘(oppCat‘𝐶)) |
33 | | eqid 2610 |
. . 3
⊢
(comp‘(oppCat‘𝐷)) = (comp‘(oppCat‘𝐷)) |
34 | | eqid 2610 |
. . 3
⊢ (Hom
‘(oppCat‘𝐶)) =
(Hom ‘(oppCat‘𝐶)) |
35 | 13, 1 | oppcbas 16201 |
. . . 4
⊢
(Base‘𝐶) =
(Base‘(oppCat‘𝐶)) |
36 | 35 | a1i 11 |
. . 3
⊢ (𝜑 → (Base‘𝐶) =
(Base‘(oppCat‘𝐶))) |
37 | 22, 21 | oppcbas 16201 |
. . . 4
⊢
(Base‘𝐷) =
(Base‘(oppCat‘𝐷)) |
38 | 23, 37 | syl6eq 2660 |
. . 3
⊢ (𝜑 → (Base‘𝐶) =
(Base‘(oppCat‘𝐷))) |
39 | 5 | oppchomfpropd 16209 |
. . 3
⊢ (𝜑 → (Homf
‘(oppCat‘𝐶)) =
(Homf ‘(oppCat‘𝐷))) |
40 | 32, 33, 34, 36, 38, 39 | comfeq 16189 |
. 2
⊢ (𝜑 →
((compf‘(oppCat‘𝐶)) =
(compf‘(oppCat‘𝐷)) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘(oppCat‘𝐶))𝑦)∀𝑔 ∈ (𝑦(Hom ‘(oppCat‘𝐶))𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝐶))𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝐷))𝑧)𝑓))) |
41 | 31, 40 | mpbird 246 |
1
⊢ (𝜑 →
(compf‘(oppCat‘𝐶)) =
(compf‘(oppCat‘𝐷))) |