Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opnssneib | Structured version Visualization version GIF version |
Description: Any superset of an open set is a neighborhood of it. (Contributed by NM, 14-Feb-2007.) |
Ref | Expression |
---|---|
neips.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
opnssneib | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 788 | . . . . . 6 ⊢ (((𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) ∧ 𝑆 ⊆ 𝑁) → 𝑁 ⊆ 𝑋) | |
2 | sseq2 3590 | . . . . . . . . . 10 ⊢ (𝑔 = 𝑆 → (𝑆 ⊆ 𝑔 ↔ 𝑆 ⊆ 𝑆)) | |
3 | sseq1 3589 | . . . . . . . . . 10 ⊢ (𝑔 = 𝑆 → (𝑔 ⊆ 𝑁 ↔ 𝑆 ⊆ 𝑁)) | |
4 | 2, 3 | anbi12d 743 | . . . . . . . . 9 ⊢ (𝑔 = 𝑆 → ((𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁) ↔ (𝑆 ⊆ 𝑆 ∧ 𝑆 ⊆ 𝑁))) |
5 | ssid 3587 | . . . . . . . . . 10 ⊢ 𝑆 ⊆ 𝑆 | |
6 | 5 | biantrur 526 | . . . . . . . . 9 ⊢ (𝑆 ⊆ 𝑁 ↔ (𝑆 ⊆ 𝑆 ∧ 𝑆 ⊆ 𝑁)) |
7 | 4, 6 | syl6bbr 277 | . . . . . . . 8 ⊢ (𝑔 = 𝑆 → ((𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁) ↔ 𝑆 ⊆ 𝑁)) |
8 | 7 | rspcev 3282 | . . . . . . 7 ⊢ ((𝑆 ∈ 𝐽 ∧ 𝑆 ⊆ 𝑁) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)) |
9 | 8 | adantlr 747 | . . . . . 6 ⊢ (((𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) ∧ 𝑆 ⊆ 𝑁) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)) |
10 | 1, 9 | jca 553 | . . . . 5 ⊢ (((𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) ∧ 𝑆 ⊆ 𝑁) → (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁))) |
11 | 10 | ex 449 | . . . 4 ⊢ ((𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 → (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
12 | 11 | 3adant1 1072 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 → (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
13 | neips.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
14 | 13 | eltopss 20537 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → 𝑆 ⊆ 𝑋) |
15 | 13 | isnei 20717 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
16 | 14, 15 | syldan 486 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
17 | 16 | 3adant3 1074 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
18 | 12, 17 | sylibrd 248 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 → 𝑁 ∈ ((nei‘𝐽)‘𝑆))) |
19 | ssnei 20724 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ⊆ 𝑁) | |
20 | 19 | ex 449 | . . 3 ⊢ (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝑆 ⊆ 𝑁)) |
21 | 20 | 3ad2ant1 1075 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝑆 ⊆ 𝑁)) |
22 | 18, 21 | impbid 201 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑋) → (𝑆 ⊆ 𝑁 ↔ 𝑁 ∈ ((nei‘𝐽)‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ∃wrex 2897 ⊆ wss 3540 ∪ cuni 4372 ‘cfv 5804 Topctop 20517 neicnei 20711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-top 20521 df-nei 20712 |
This theorem is referenced by: neissex 20741 |
Copyright terms: Public domain | W3C validator |