Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnssneib Structured version   Visualization version   GIF version

Theorem opnssneib 20729
 Description: Any superset of an open set is a neighborhood of it. (Contributed by NM, 14-Feb-2007.)
Hypothesis
Ref Expression
neips.1 𝑋 = 𝐽
Assertion
Ref Expression
opnssneib ((𝐽 ∈ Top ∧ 𝑆𝐽𝑁𝑋) → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))

Proof of Theorem opnssneib
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simplr 788 . . . . . 6 (((𝑆𝐽𝑁𝑋) ∧ 𝑆𝑁) → 𝑁𝑋)
2 sseq2 3590 . . . . . . . . . 10 (𝑔 = 𝑆 → (𝑆𝑔𝑆𝑆))
3 sseq1 3589 . . . . . . . . . 10 (𝑔 = 𝑆 → (𝑔𝑁𝑆𝑁))
42, 3anbi12d 743 . . . . . . . . 9 (𝑔 = 𝑆 → ((𝑆𝑔𝑔𝑁) ↔ (𝑆𝑆𝑆𝑁)))
5 ssid 3587 . . . . . . . . . 10 𝑆𝑆
65biantrur 526 . . . . . . . . 9 (𝑆𝑁 ↔ (𝑆𝑆𝑆𝑁))
74, 6syl6bbr 277 . . . . . . . 8 (𝑔 = 𝑆 → ((𝑆𝑔𝑔𝑁) ↔ 𝑆𝑁))
87rspcev 3282 . . . . . . 7 ((𝑆𝐽𝑆𝑁) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
98adantlr 747 . . . . . 6 (((𝑆𝐽𝑁𝑋) ∧ 𝑆𝑁) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
101, 9jca 553 . . . . 5 (((𝑆𝐽𝑁𝑋) ∧ 𝑆𝑁) → (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁)))
1110ex 449 . . . 4 ((𝑆𝐽𝑁𝑋) → (𝑆𝑁 → (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
12113adant1 1072 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝐽𝑁𝑋) → (𝑆𝑁 → (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
13 neips.1 . . . . . 6 𝑋 = 𝐽
1413eltopss 20537 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝐽) → 𝑆𝑋)
1513isnei 20717 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
1614, 15syldan 486 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝐽) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
17163adant3 1074 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝐽𝑁𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
1812, 17sylibrd 248 . 2 ((𝐽 ∈ Top ∧ 𝑆𝐽𝑁𝑋) → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))
19 ssnei 20724 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆𝑁)
2019ex 449 . . 3 (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝑆𝑁))
21203ad2ant1 1075 . 2 ((𝐽 ∈ Top ∧ 𝑆𝐽𝑁𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝑆𝑁))
2218, 21impbid 201 1 ((𝐽 ∈ Top ∧ 𝑆𝐽𝑁𝑋) → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∃wrex 2897   ⊆ wss 3540  ∪ cuni 4372  ‘cfv 5804  Topctop 20517  neicnei 20711 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-top 20521  df-nei 20712 This theorem is referenced by:  neissex  20741
 Copyright terms: Public domain W3C validator