Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opelvvg | Structured version Visualization version GIF version |
Description: Ordered pair membership in the universal class of ordered pairs. (Contributed by Mario Carneiro, 3-May-2015.) |
Ref | Expression |
---|---|
opelvvg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 ∈ (V × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3185 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | elex 3185 | . 2 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
3 | opelxpi 5072 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 ∈ (V × V)) | |
4 | 1, 2, 3 | syl2an 493 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 ∈ (V × V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 1977 Vcvv 3173 〈cop 4131 × cxp 5036 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-opab 4644 df-xp 5044 |
This theorem is referenced by: isof1oopb 6475 opvtxfv 25681 opiedgfv 25684 |
Copyright terms: Public domain | W3C validator |