Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  opeliunxp Structured version   Visualization version   GIF version

Theorem opeliunxp 5093
 Description: Membership in a union of Cartesian products. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by Mario Carneiro, 1-Jan-2017.)
Assertion
Ref Expression
opeliunxp (⟨𝑥, 𝐶⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝐶𝐵))

Proof of Theorem opeliunxp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iun 4457 . . 3 𝑥𝐴 ({𝑥} × 𝐵) = {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ ({𝑥} × 𝐵)}
21eleq2i 2680 . 2 (⟨𝑥, 𝐶⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ ⟨𝑥, 𝐶⟩ ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ ({𝑥} × 𝐵)})
3 opex 4859 . . 3 𝑥, 𝐶⟩ ∈ V
4 df-rex 2902 . . . . 5 (∃𝑥𝐴 𝑦 ∈ ({𝑥} × 𝐵) ↔ ∃𝑥(𝑥𝐴𝑦 ∈ ({𝑥} × 𝐵)))
5 nfv 1830 . . . . . 6 𝑧(𝑥𝐴𝑦 ∈ ({𝑥} × 𝐵))
6 nfs1v 2425 . . . . . . 7 𝑥[𝑧 / 𝑥]𝑥𝐴
7 nfcv 2751 . . . . . . . . 9 𝑥{𝑧}
8 nfcsb1v 3515 . . . . . . . . 9 𝑥𝑧 / 𝑥𝐵
97, 8nfxp 5066 . . . . . . . 8 𝑥({𝑧} × 𝑧 / 𝑥𝐵)
109nfcri 2745 . . . . . . 7 𝑥 𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵)
116, 10nfan 1816 . . . . . 6 𝑥([𝑧 / 𝑥]𝑥𝐴𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵))
12 sbequ12 2097 . . . . . . 7 (𝑥 = 𝑧 → (𝑥𝐴 ↔ [𝑧 / 𝑥]𝑥𝐴))
13 sneq 4135 . . . . . . . . 9 (𝑥 = 𝑧 → {𝑥} = {𝑧})
14 csbeq1a 3508 . . . . . . . . 9 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
1513, 14xpeq12d 5064 . . . . . . . 8 (𝑥 = 𝑧 → ({𝑥} × 𝐵) = ({𝑧} × 𝑧 / 𝑥𝐵))
1615eleq2d 2673 . . . . . . 7 (𝑥 = 𝑧 → (𝑦 ∈ ({𝑥} × 𝐵) ↔ 𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵)))
1712, 16anbi12d 743 . . . . . 6 (𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∈ ({𝑥} × 𝐵)) ↔ ([𝑧 / 𝑥]𝑥𝐴𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵))))
185, 11, 17cbvex 2260 . . . . 5 (∃𝑥(𝑥𝐴𝑦 ∈ ({𝑥} × 𝐵)) ↔ ∃𝑧([𝑧 / 𝑥]𝑥𝐴𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵)))
194, 18bitri 263 . . . 4 (∃𝑥𝐴 𝑦 ∈ ({𝑥} × 𝐵) ↔ ∃𝑧([𝑧 / 𝑥]𝑥𝐴𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵)))
20 eleq1 2676 . . . . . 6 (𝑦 = ⟨𝑥, 𝐶⟩ → (𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵) ↔ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵)))
2120anbi2d 736 . . . . 5 (𝑦 = ⟨𝑥, 𝐶⟩ → (([𝑧 / 𝑥]𝑥𝐴𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵)) ↔ ([𝑧 / 𝑥]𝑥𝐴 ∧ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵))))
2221exbidv 1837 . . . 4 (𝑦 = ⟨𝑥, 𝐶⟩ → (∃𝑧([𝑧 / 𝑥]𝑥𝐴𝑦 ∈ ({𝑧} × 𝑧 / 𝑥𝐵)) ↔ ∃𝑧([𝑧 / 𝑥]𝑥𝐴 ∧ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵))))
2319, 22syl5bb 271 . . 3 (𝑦 = ⟨𝑥, 𝐶⟩ → (∃𝑥𝐴 𝑦 ∈ ({𝑥} × 𝐵) ↔ ∃𝑧([𝑧 / 𝑥]𝑥𝐴 ∧ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵))))
243, 23elab 3319 . 2 (⟨𝑥, 𝐶⟩ ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 ∈ ({𝑥} × 𝐵)} ↔ ∃𝑧([𝑧 / 𝑥]𝑥𝐴 ∧ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵)))
25 opelxp 5070 . . . . . 6 (⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵) ↔ (𝑥 ∈ {𝑧} ∧ 𝐶𝑧 / 𝑥𝐵))
2625anbi2i 726 . . . . 5 (([𝑧 / 𝑥]𝑥𝐴 ∧ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵)) ↔ ([𝑧 / 𝑥]𝑥𝐴 ∧ (𝑥 ∈ {𝑧} ∧ 𝐶𝑧 / 𝑥𝐵)))
27 an12 834 . . . . 5 (([𝑧 / 𝑥]𝑥𝐴 ∧ (𝑥 ∈ {𝑧} ∧ 𝐶𝑧 / 𝑥𝐵)) ↔ (𝑥 ∈ {𝑧} ∧ ([𝑧 / 𝑥]𝑥𝐴𝐶𝑧 / 𝑥𝐵)))
28 velsn 4141 . . . . . . 7 (𝑥 ∈ {𝑧} ↔ 𝑥 = 𝑧)
29 equcom 1932 . . . . . . 7 (𝑥 = 𝑧𝑧 = 𝑥)
3028, 29bitri 263 . . . . . 6 (𝑥 ∈ {𝑧} ↔ 𝑧 = 𝑥)
3130anbi1i 727 . . . . 5 ((𝑥 ∈ {𝑧} ∧ ([𝑧 / 𝑥]𝑥𝐴𝐶𝑧 / 𝑥𝐵)) ↔ (𝑧 = 𝑥 ∧ ([𝑧 / 𝑥]𝑥𝐴𝐶𝑧 / 𝑥𝐵)))
3226, 27, 313bitri 285 . . . 4 (([𝑧 / 𝑥]𝑥𝐴 ∧ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵)) ↔ (𝑧 = 𝑥 ∧ ([𝑧 / 𝑥]𝑥𝐴𝐶𝑧 / 𝑥𝐵)))
3332exbii 1764 . . 3 (∃𝑧([𝑧 / 𝑥]𝑥𝐴 ∧ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵)) ↔ ∃𝑧(𝑧 = 𝑥 ∧ ([𝑧 / 𝑥]𝑥𝐴𝐶𝑧 / 𝑥𝐵)))
34 sbequ12r 2098 . . . . 5 (𝑧 = 𝑥 → ([𝑧 / 𝑥]𝑥𝐴𝑥𝐴))
3514equcoms 1934 . . . . . . 7 (𝑧 = 𝑥𝐵 = 𝑧 / 𝑥𝐵)
3635eqcomd 2616 . . . . . 6 (𝑧 = 𝑥𝑧 / 𝑥𝐵 = 𝐵)
3736eleq2d 2673 . . . . 5 (𝑧 = 𝑥 → (𝐶𝑧 / 𝑥𝐵𝐶𝐵))
3834, 37anbi12d 743 . . . 4 (𝑧 = 𝑥 → (([𝑧 / 𝑥]𝑥𝐴𝐶𝑧 / 𝑥𝐵) ↔ (𝑥𝐴𝐶𝐵)))
3938equsexvw 1919 . . 3 (∃𝑧(𝑧 = 𝑥 ∧ ([𝑧 / 𝑥]𝑥𝐴𝐶𝑧 / 𝑥𝐵)) ↔ (𝑥𝐴𝐶𝐵))
4033, 39bitri 263 . 2 (∃𝑧([𝑧 / 𝑥]𝑥𝐴 ∧ ⟨𝑥, 𝐶⟩ ∈ ({𝑧} × 𝑧 / 𝑥𝐵)) ↔ (𝑥𝐴𝐶𝐵))
412, 24, 403bitri 285 1 (⟨𝑥, 𝐶⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝐶𝐵))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   ∧ wa 383   = wceq 1475  ∃wex 1695  [wsb 1867   ∈ wcel 1977  {cab 2596  ∃wrex 2897  ⦋csb 3499  {csn 4125  ⟨cop 4131  ∪ ciun 4455   × cxp 5036 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-iun 4457  df-opab 4644  df-xp 5044 This theorem is referenced by:  eliunxp  5181  opeliunxp2  5182  opeliunxp2f  7223  gsum2d2lem  18195  gsum2d2  18196  gsumcom2  18197  dprdval  18225  ptbasfi  21194  cnextfun  21678  cnextfvval  21679  cnextf  21680  dvbsss  23472  iunsnima  28808
 Copyright terms: Public domain W3C validator