MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabss Structured version   Visualization version   GIF version

Theorem opabss 4646
Description: The collection of ordered pairs in a class is a subclass of it. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
opabss {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} ⊆ 𝑅
Distinct variable groups:   𝑥,𝑅   𝑦,𝑅

Proof of Theorem opabss
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-opab 4644 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑥𝑅𝑦)}
2 df-br 4584 . . . . 5 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
3 eleq1 2676 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
43biimpar 501 . . . . 5 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅) → 𝑧𝑅)
52, 4sylan2b 491 . . . 4 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑥𝑅𝑦) → 𝑧𝑅)
65exlimivv 1847 . . 3 (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑥𝑅𝑦) → 𝑧𝑅)
76abssi 3640 . 2 {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑥𝑅𝑦)} ⊆ 𝑅
81, 7eqsstri 3598 1 {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} ⊆ 𝑅
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1475  wex 1695  wcel 1977  {cab 2596  wss 3540  cop 4131   class class class wbr 4583  {copab 4642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-in 3547  df-ss 3554  df-br 4584  df-opab 4644
This theorem is referenced by:  aceq3lem  8826  fullfunc  16389  fthfunc  16390  isfull  16393  isfth  16397
  Copyright terms: Public domain W3C validator