Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  onprc Structured version   Visualization version   GIF version

Theorem onprc 6876
 Description: No set contains all ordinal numbers. Proposition 7.13 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. This is also known as the Burali-Forti paradox (remark in [Enderton] p. 194). In 1897, Cesare Burali-Forti noticed that since the "set" of all ordinal numbers is an ordinal class (ordon 6874), it must be both an element of the set of all ordinal numbers yet greater than every such element. ZF set theory resolves this paradox by not allowing the class of all ordinal numbers to be a set (so instead it is a proper class). Here we prove the denial of its existence. (Contributed by NM, 18-May-1994.)
Assertion
Ref Expression
onprc ¬ On ∈ V

Proof of Theorem onprc
StepHypRef Expression
1 ordon 6874 . . 3 Ord On
2 ordirr 5658 . . 3 (Ord On → ¬ On ∈ On)
31, 2ax-mp 5 . 2 ¬ On ∈ On
4 elong 5648 . . 3 (On ∈ V → (On ∈ On ↔ Ord On))
51, 4mpbiri 247 . 2 (On ∈ V → On ∈ On)
63, 5mto 187 1 ¬ On ∈ V
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ∈ wcel 1977  Vcvv 3173  Ord word 5639  Oncon0 5640 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-tr 4681  df-eprel 4949  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-ord 5643  df-on 5644 This theorem is referenced by:  ordeleqon  6880  ssonprc  6884  sucon  6900  orduninsuc  6935  omelon2  6969  tfr2b  7379  tz7.48-3  7426  infensuc  8023  zorn2lem4  9204  noprc  31080
 Copyright terms: Public domain W3C validator