MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oncardid Structured version   Visualization version   GIF version

Theorem oncardid 8665
Description: Any ordinal number is equinumerous to its cardinal number. Unlike cardid 9248, this theorem does not require the Axiom of Choice. (Contributed by NM, 26-Jul-2004.)
Assertion
Ref Expression
oncardid (𝐴 ∈ On → (card‘𝐴) ≈ 𝐴)

Proof of Theorem oncardid
StepHypRef Expression
1 onenon 8658 . 2 (𝐴 ∈ On → 𝐴 ∈ dom card)
2 cardid2 8662 . 2 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
31, 2syl 17 1 (𝐴 ∈ On → (card‘𝐴) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1977   class class class wbr 4583  dom cdm 5038  Oncon0 5640  cfv 5804  cen 7838  cardccrd 8644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-en 7842  df-card 8648
This theorem is referenced by:  cardom  8695  alephinit  8801  dfac12k  8852
  Copyright terms: Public domain W3C validator