Step | Hyp | Ref
| Expression |
1 | | frsuc 7419 |
. . . 4
⊢ (𝐵 ∈ ω →
((rec((𝑥 ∈ V ↦
suc 𝑥), 𝐴) ↾ ω)‘suc 𝐵) = ((𝑥 ∈ V ↦ suc 𝑥)‘((rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴) ↾ ω)‘𝐵))) |
2 | 1 | adantl 481 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) →
((rec((𝑥 ∈ V ↦
suc 𝑥), 𝐴) ↾ ω)‘suc 𝐵) = ((𝑥 ∈ V ↦ suc 𝑥)‘((rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴) ↾ ω)‘𝐵))) |
3 | | peano2 6978 |
. . . . 5
⊢ (𝐵 ∈ ω → suc 𝐵 ∈
ω) |
4 | 3 | adantl 481 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → suc
𝐵 ∈
ω) |
5 | | fvres 6117 |
. . . 4
⊢ (suc
𝐵 ∈ ω →
((rec((𝑥 ∈ V ↦
suc 𝑥), 𝐴) ↾ ω)‘suc 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘suc 𝐵)) |
6 | 4, 5 | syl 17 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) →
((rec((𝑥 ∈ V ↦
suc 𝑥), 𝐴) ↾ ω)‘suc 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘suc 𝐵)) |
7 | | fvres 6117 |
. . . . 5
⊢ (𝐵 ∈ ω →
((rec((𝑥 ∈ V ↦
suc 𝑥), 𝐴) ↾ ω)‘𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵)) |
8 | 7 | adantl 481 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) →
((rec((𝑥 ∈ V ↦
suc 𝑥), 𝐴) ↾ ω)‘𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵)) |
9 | 8 | fveq2d 6107 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → ((𝑥 ∈ V ↦ suc 𝑥)‘((rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴) ↾ ω)‘𝐵)) = ((𝑥 ∈ V ↦ suc 𝑥)‘(rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵))) |
10 | 2, 6, 9 | 3eqtr3d 2652 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) →
(rec((𝑥 ∈ V ↦
suc 𝑥), 𝐴)‘suc 𝐵) = ((𝑥 ∈ V ↦ suc 𝑥)‘(rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵))) |
11 | | nnon 6963 |
. . . 4
⊢ (𝐵 ∈ ω → 𝐵 ∈ On) |
12 | | suceloni 6905 |
. . . 4
⊢ (𝐵 ∈ On → suc 𝐵 ∈ On) |
13 | 11, 12 | syl 17 |
. . 3
⊢ (𝐵 ∈ ω → suc 𝐵 ∈ On) |
14 | | oav 7478 |
. . 3
⊢ ((𝐴 ∈ On ∧ suc 𝐵 ∈ On) → (𝐴 +𝑜 suc 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘suc 𝐵)) |
15 | 13, 14 | sylan2 490 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 +𝑜 suc 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘suc 𝐵)) |
16 | | ovex 6577 |
. . . 4
⊢ (𝐴 +𝑜 𝐵) ∈ V |
17 | | suceq 5707 |
. . . . 5
⊢ (𝑥 = (𝐴 +𝑜 𝐵) → suc 𝑥 = suc (𝐴 +𝑜 𝐵)) |
18 | | eqid 2610 |
. . . . 5
⊢ (𝑥 ∈ V ↦ suc 𝑥) = (𝑥 ∈ V ↦ suc 𝑥) |
19 | 16 | sucex 6903 |
. . . . 5
⊢ suc
(𝐴 +𝑜
𝐵) ∈
V |
20 | 17, 18, 19 | fvmpt 6191 |
. . . 4
⊢ ((𝐴 +𝑜 𝐵) ∈ V → ((𝑥 ∈ V ↦ suc 𝑥)‘(𝐴 +𝑜 𝐵)) = suc (𝐴 +𝑜 𝐵)) |
21 | 16, 20 | ax-mp 5 |
. . 3
⊢ ((𝑥 ∈ V ↦ suc 𝑥)‘(𝐴 +𝑜 𝐵)) = suc (𝐴 +𝑜 𝐵) |
22 | | oav 7478 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵)) |
23 | 11, 22 | sylan2 490 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 +𝑜 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵)) |
24 | 23 | fveq2d 6107 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → ((𝑥 ∈ V ↦ suc 𝑥)‘(𝐴 +𝑜 𝐵)) = ((𝑥 ∈ V ↦ suc 𝑥)‘(rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵))) |
25 | 21, 24 | syl5eqr 2658 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → suc
(𝐴 +𝑜
𝐵) = ((𝑥 ∈ V ↦ suc 𝑥)‘(rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵))) |
26 | 10, 15, 25 | 3eqtr4d 2654 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 +𝑜 suc 𝐵) = suc (𝐴 +𝑜 𝐵)) |