MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omxpenlem Structured version   Visualization version   GIF version

Theorem omxpenlem 7946
Description: Lemma for omxpen 7947. (Contributed by Mario Carneiro, 3-Mar-2013.) (Revised by Mario Carneiro, 25-May-2015.)
Hypothesis
Ref Expression
omxpenlem.1 𝐹 = (𝑥𝐵, 𝑦𝐴 ↦ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦))
Assertion
Ref Expression
omxpenlem ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:(𝐵 × 𝐴)–1-1-onto→(𝐴 ·𝑜 𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem omxpenlem
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eloni 5650 . . . . . . . . 9 (𝐵 ∈ On → Ord 𝐵)
21ad2antlr 759 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → Ord 𝐵)
3 simprl 790 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → 𝑥𝐵)
4 ordsucss 6910 . . . . . . . 8 (Ord 𝐵 → (𝑥𝐵 → suc 𝑥𝐵))
52, 3, 4sylc 63 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → suc 𝑥𝐵)
6 onelon 5665 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝑥𝐵) → 𝑥 ∈ On)
76ad2ant2lr 780 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → 𝑥 ∈ On)
8 suceloni 6905 . . . . . . . . 9 (𝑥 ∈ On → suc 𝑥 ∈ On)
97, 8syl 17 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → suc 𝑥 ∈ On)
10 simplr 788 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → 𝐵 ∈ On)
11 simpll 786 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → 𝐴 ∈ On)
12 omwordi 7538 . . . . . . . 8 ((suc 𝑥 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) → (suc 𝑥𝐵 → (𝐴 ·𝑜 suc 𝑥) ⊆ (𝐴 ·𝑜 𝐵)))
139, 10, 11, 12syl3anc 1318 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → (suc 𝑥𝐵 → (𝐴 ·𝑜 suc 𝑥) ⊆ (𝐴 ·𝑜 𝐵)))
145, 13mpd 15 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → (𝐴 ·𝑜 suc 𝑥) ⊆ (𝐴 ·𝑜 𝐵))
15 simprr 792 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → 𝑦𝐴)
16 onelon 5665 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑦𝐴) → 𝑦 ∈ On)
1716ad2ant2rl 781 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → 𝑦 ∈ On)
18 omcl 7503 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ·𝑜 𝑥) ∈ On)
1911, 7, 18syl2anc 691 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → (𝐴 ·𝑜 𝑥) ∈ On)
20 oaord 7514 . . . . . . . . 9 ((𝑦 ∈ On ∧ 𝐴 ∈ On ∧ (𝐴 ·𝑜 𝑥) ∈ On) → (𝑦𝐴 ↔ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ ((𝐴 ·𝑜 𝑥) +𝑜 𝐴)))
2117, 11, 19, 20syl3anc 1318 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → (𝑦𝐴 ↔ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ ((𝐴 ·𝑜 𝑥) +𝑜 𝐴)))
2215, 21mpbid 221 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ ((𝐴 ·𝑜 𝑥) +𝑜 𝐴))
23 omsuc 7493 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ·𝑜 suc 𝑥) = ((𝐴 ·𝑜 𝑥) +𝑜 𝐴))
2411, 7, 23syl2anc 691 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → (𝐴 ·𝑜 suc 𝑥) = ((𝐴 ·𝑜 𝑥) +𝑜 𝐴))
2522, 24eleqtrrd 2691 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 suc 𝑥))
2614, 25sseldd 3569 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥𝐵𝑦𝐴)) → ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵))
2726ralrimivva 2954 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∀𝑥𝐵𝑦𝐴 ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵))
28 omxpenlem.1 . . . . 5 𝐹 = (𝑥𝐵, 𝑦𝐴 ↦ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦))
2928fmpt2 7126 . . . 4 (∀𝑥𝐵𝑦𝐴 ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ↔ 𝐹:(𝐵 × 𝐴)⟶(𝐴 ·𝑜 𝐵))
3027, 29sylib 207 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:(𝐵 × 𝐴)⟶(𝐴 ·𝑜 𝐵))
31 ffn 5958 . . 3 (𝐹:(𝐵 × 𝐴)⟶(𝐴 ·𝑜 𝐵) → 𝐹 Fn (𝐵 × 𝐴))
3230, 31syl 17 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹 Fn (𝐵 × 𝐴))
33 simpll 786 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·𝑜 𝐵)) → 𝐴 ∈ On)
34 omcl 7503 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 𝐵) ∈ On)
35 onelon 5665 . . . . . . . 8 (((𝐴 ·𝑜 𝐵) ∈ On ∧ 𝑚 ∈ (𝐴 ·𝑜 𝐵)) → 𝑚 ∈ On)
3634, 35sylan 487 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·𝑜 𝐵)) → 𝑚 ∈ On)
37 noel 3878 . . . . . . . . . . . 12 ¬ 𝑚 ∈ ∅
38 oveq1 6556 . . . . . . . . . . . . . 14 (𝐴 = ∅ → (𝐴 ·𝑜 𝐵) = (∅ ·𝑜 𝐵))
39 om0r 7506 . . . . . . . . . . . . . 14 (𝐵 ∈ On → (∅ ·𝑜 𝐵) = ∅)
4038, 39sylan9eqr 2666 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ 𝐴 = ∅) → (𝐴 ·𝑜 𝐵) = ∅)
4140eleq2d 2673 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ 𝐴 = ∅) → (𝑚 ∈ (𝐴 ·𝑜 𝐵) ↔ 𝑚 ∈ ∅))
4237, 41mtbiri 316 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝐴 = ∅) → ¬ 𝑚 ∈ (𝐴 ·𝑜 𝐵))
4342ex 449 . . . . . . . . . 10 (𝐵 ∈ On → (𝐴 = ∅ → ¬ 𝑚 ∈ (𝐴 ·𝑜 𝐵)))
4443necon2ad 2797 . . . . . . . . 9 (𝐵 ∈ On → (𝑚 ∈ (𝐴 ·𝑜 𝐵) → 𝐴 ≠ ∅))
4544adantl 481 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑚 ∈ (𝐴 ·𝑜 𝐵) → 𝐴 ≠ ∅))
4645imp 444 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·𝑜 𝐵)) → 𝐴 ≠ ∅)
47 omeu 7552 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑚 ∈ On ∧ 𝐴 ≠ ∅) → ∃!𝑛𝑥 ∈ On ∃𝑦𝐴 (𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝑚))
4833, 36, 46, 47syl3anc 1318 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·𝑜 𝐵)) → ∃!𝑛𝑥 ∈ On ∃𝑦𝐴 (𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝑚))
49 vex 3176 . . . . . . . . 9 𝑚 ∈ V
50 vex 3176 . . . . . . . . 9 𝑛 ∈ V
5149, 50brcnv 5227 . . . . . . . 8 (𝑚𝐹𝑛𝑛𝐹𝑚)
52 eleq1 2676 . . . . . . . . . . . . . . . . 17 (𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) → (𝑚 ∈ (𝐴 ·𝑜 𝐵) ↔ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵)))
5352biimpac 502 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦)) → ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵))
546ex 449 . . . . . . . . . . . . . . . . . . . 20 (𝐵 ∈ On → (𝑥𝐵𝑥 ∈ On))
5554ad2antlr 759 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) → (𝑥𝐵𝑥 ∈ On))
56 simplll 794 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → 𝐴 ∈ On)
57 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → 𝑥 ∈ On)
5856, 57, 18syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → (𝐴 ·𝑜 𝑥) ∈ On)
59 simplrr 797 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → 𝑦𝐴)
6056, 59, 16syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → 𝑦 ∈ On)
61 oaword1 7519 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ·𝑜 𝑥) ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·𝑜 𝑥) ⊆ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦))
6258, 60, 61syl2anc 691 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → (𝐴 ·𝑜 𝑥) ⊆ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦))
63 simplrl 796 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵))
6434ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → (𝐴 ·𝑜 𝐵) ∈ On)
65 ontr2 5689 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ·𝑜 𝑥) ∈ On ∧ (𝐴 ·𝑜 𝐵) ∈ On) → (((𝐴 ·𝑜 𝑥) ⊆ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵)) → (𝐴 ·𝑜 𝑥) ∈ (𝐴 ·𝑜 𝐵)))
6658, 64, 65syl2anc 691 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → (((𝐴 ·𝑜 𝑥) ⊆ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵)) → (𝐴 ·𝑜 𝑥) ∈ (𝐴 ·𝑜 𝐵)))
6762, 63, 66mp2and 711 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → (𝐴 ·𝑜 𝑥) ∈ (𝐴 ·𝑜 𝐵))
68 simpllr 795 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → 𝐵 ∈ On)
69 ne0i 3880 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) → (𝐴 ·𝑜 𝐵) ≠ ∅)
7063, 69syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → (𝐴 ·𝑜 𝐵) ≠ ∅)
71 on0eln0 5697 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ·𝑜 𝐵) ∈ On → (∅ ∈ (𝐴 ·𝑜 𝐵) ↔ (𝐴 ·𝑜 𝐵) ≠ ∅))
7264, 71syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → (∅ ∈ (𝐴 ·𝑜 𝐵) ↔ (𝐴 ·𝑜 𝐵) ≠ ∅))
7370, 72mpbird 246 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → ∅ ∈ (𝐴 ·𝑜 𝐵))
74 om00el 7543 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ (𝐴 ·𝑜 𝐵) ↔ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵)))
7574ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → (∅ ∈ (𝐴 ·𝑜 𝐵) ↔ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵)))
7673, 75mpbid 221 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → (∅ ∈ 𝐴 ∧ ∅ ∈ 𝐵))
7776simpld 474 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → ∅ ∈ 𝐴)
78 omord2 7534 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑥𝐵 ↔ (𝐴 ·𝑜 𝑥) ∈ (𝐴 ·𝑜 𝐵)))
7957, 68, 56, 77, 78syl31anc 1321 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → (𝑥𝐵 ↔ (𝐴 ·𝑜 𝑥) ∈ (𝐴 ·𝑜 𝐵)))
8067, 79mpbird 246 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) ∧ 𝑥 ∈ On) → 𝑥𝐵)
8180ex 449 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) → (𝑥 ∈ On → 𝑥𝐵))
8255, 81impbid 201 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑦𝐴)) → (𝑥𝐵𝑥 ∈ On))
8382expr 641 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵)) → (𝑦𝐴 → (𝑥𝐵𝑥 ∈ On)))
8483pm5.32rd 670 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ∈ (𝐴 ·𝑜 𝐵)) → ((𝑥𝐵𝑦𝐴) ↔ (𝑥 ∈ On ∧ 𝑦𝐴)))
8553, 84sylan2 490 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑚 ∈ (𝐴 ·𝑜 𝐵) ∧ 𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦))) → ((𝑥𝐵𝑦𝐴) ↔ (𝑥 ∈ On ∧ 𝑦𝐴)))
8685expr 641 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·𝑜 𝐵)) → (𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) → ((𝑥𝐵𝑦𝐴) ↔ (𝑥 ∈ On ∧ 𝑦𝐴))))
8786pm5.32rd 670 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·𝑜 𝐵)) → (((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦)) ↔ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ 𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦))))
88 eqcom 2617 . . . . . . . . . . . . . 14 (𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) ↔ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝑚)
8988anbi2i 726 . . . . . . . . . . . . 13 (((𝑥 ∈ On ∧ 𝑦𝐴) ∧ 𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦)) ↔ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝑚))
9087, 89syl6bb 275 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·𝑜 𝐵)) → (((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦)) ↔ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝑚)))
9190anbi2d 736 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·𝑜 𝐵)) → ((𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦))) ↔ (𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝑚))))
92 an12 834 . . . . . . . . . . 11 ((𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝑚)) ↔ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝑚)))
9391, 92syl6bb 275 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·𝑜 𝐵)) → ((𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦))) ↔ ((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝑚))))
94932exbidv 1839 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·𝑜 𝐵)) → (∃𝑥𝑦(𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦))) ↔ ∃𝑥𝑦((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝑚))))
95 df-mpt2 6554 . . . . . . . . . . . 12 (𝑥𝐵, 𝑦𝐴 ↦ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦)) = {⟨⟨𝑥, 𝑦⟩, 𝑚⟩ ∣ ((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦))}
96 dfoprab2 6599 . . . . . . . . . . . 12 {⟨⟨𝑥, 𝑦⟩, 𝑚⟩ ∣ ((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦))} = {⟨𝑛, 𝑚⟩ ∣ ∃𝑥𝑦(𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦)))}
9728, 95, 963eqtri 2636 . . . . . . . . . . 11 𝐹 = {⟨𝑛, 𝑚⟩ ∣ ∃𝑥𝑦(𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦)))}
9897breqi 4589 . . . . . . . . . 10 (𝑛𝐹𝑚𝑛{⟨𝑛, 𝑚⟩ ∣ ∃𝑥𝑦(𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦)))}𝑚)
99 df-br 4584 . . . . . . . . . 10 (𝑛{⟨𝑛, 𝑚⟩ ∣ ∃𝑥𝑦(𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦)))}𝑚 ↔ ⟨𝑛, 𝑚⟩ ∈ {⟨𝑛, 𝑚⟩ ∣ ∃𝑥𝑦(𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦)))})
100 opabid 4907 . . . . . . . . . 10 (⟨𝑛, 𝑚⟩ ∈ {⟨𝑛, 𝑚⟩ ∣ ∃𝑥𝑦(𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦)))} ↔ ∃𝑥𝑦(𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦))))
10198, 99, 1003bitri 285 . . . . . . . . 9 (𝑛𝐹𝑚 ↔ ∃𝑥𝑦(𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐵𝑦𝐴) ∧ 𝑚 = ((𝐴 ·𝑜 𝑥) +𝑜 𝑦))))
102 r2ex 3043 . . . . . . . . 9 (∃𝑥 ∈ On ∃𝑦𝐴 (𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝑚) ↔ ∃𝑥𝑦((𝑥 ∈ On ∧ 𝑦𝐴) ∧ (𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝑚)))
10394, 101, 1023bitr4g 302 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·𝑜 𝐵)) → (𝑛𝐹𝑚 ↔ ∃𝑥 ∈ On ∃𝑦𝐴 (𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝑚)))
10451, 103syl5bb 271 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·𝑜 𝐵)) → (𝑚𝐹𝑛 ↔ ∃𝑥 ∈ On ∃𝑦𝐴 (𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝑚)))
105104eubidv 2478 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·𝑜 𝐵)) → (∃!𝑛 𝑚𝐹𝑛 ↔ ∃!𝑛𝑥 ∈ On ∃𝑦𝐴 (𝑛 = ⟨𝑥, 𝑦⟩ ∧ ((𝐴 ·𝑜 𝑥) +𝑜 𝑦) = 𝑚)))
10648, 105mpbird 246 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑚 ∈ (𝐴 ·𝑜 𝐵)) → ∃!𝑛 𝑚𝐹𝑛)
107106ralrimiva 2949 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∀𝑚 ∈ (𝐴 ·𝑜 𝐵)∃!𝑛 𝑚𝐹𝑛)
108 fnres 5921 . . . 4 ((𝐹 ↾ (𝐴 ·𝑜 𝐵)) Fn (𝐴 ·𝑜 𝐵) ↔ ∀𝑚 ∈ (𝐴 ·𝑜 𝐵)∃!𝑛 𝑚𝐹𝑛)
109107, 108sylibr 223 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐹 ↾ (𝐴 ·𝑜 𝐵)) Fn (𝐴 ·𝑜 𝐵))
110 relcnv 5422 . . . . 5 Rel 𝐹
111 df-rn 5049 . . . . . 6 ran 𝐹 = dom 𝐹
112 frn 5966 . . . . . . 7 (𝐹:(𝐵 × 𝐴)⟶(𝐴 ·𝑜 𝐵) → ran 𝐹 ⊆ (𝐴 ·𝑜 𝐵))
11330, 112syl 17 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ran 𝐹 ⊆ (𝐴 ·𝑜 𝐵))
114111, 113syl5eqssr 3613 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → dom 𝐹 ⊆ (𝐴 ·𝑜 𝐵))
115 relssres 5357 . . . . 5 ((Rel 𝐹 ∧ dom 𝐹 ⊆ (𝐴 ·𝑜 𝐵)) → (𝐹 ↾ (𝐴 ·𝑜 𝐵)) = 𝐹)
116110, 114, 115sylancr 694 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐹 ↾ (𝐴 ·𝑜 𝐵)) = 𝐹)
117116fneq1d 5895 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐹 ↾ (𝐴 ·𝑜 𝐵)) Fn (𝐴 ·𝑜 𝐵) ↔ 𝐹 Fn (𝐴 ·𝑜 𝐵)))
118109, 117mpbid 221 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹 Fn (𝐴 ·𝑜 𝐵))
119 dff1o4 6058 . 2 (𝐹:(𝐵 × 𝐴)–1-1-onto→(𝐴 ·𝑜 𝐵) ↔ (𝐹 Fn (𝐵 × 𝐴) ∧ 𝐹 Fn (𝐴 ·𝑜 𝐵)))
12032, 118, 119sylanbrc 695 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:(𝐵 × 𝐴)–1-1-onto→(𝐴 ·𝑜 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  ∃!weu 2458  wne 2780  wral 2896  wrex 2897  wss 3540  c0 3874  cop 4131   class class class wbr 4583  {copab 4642   × cxp 5036  ccnv 5037  dom cdm 5038  ran crn 5039  cres 5040  Rel wrel 5043  Ord word 5639  Oncon0 5640  suc csuc 5642   Fn wfn 5799  wf 5800  1-1-ontowf1o 5803  (class class class)co 6549  {coprab 6550  cmpt2 6551   +𝑜 coa 7444   ·𝑜 comu 7445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-omul 7452
This theorem is referenced by:  omxpen  7947  omf1o  7948  infxpenc  8724
  Copyright terms: Public domain W3C validator