MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omwordri Structured version   Visualization version   GIF version

Theorem omwordri 7539
Description: Weak ordering property of ordinal multiplication. Proposition 8.21 of [TakeutiZaring] p. 63. (Contributed by NM, 20-Dec-2004.)
Assertion
Ref Expression
omwordri ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴 ·𝑜 𝐶) ⊆ (𝐵 ·𝑜 𝐶)))

Proof of Theorem omwordri
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6557 . . . . . 6 (𝑥 = ∅ → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 ∅))
2 oveq2 6557 . . . . . 6 (𝑥 = ∅ → (𝐵 ·𝑜 𝑥) = (𝐵 ·𝑜 ∅))
31, 2sseq12d 3597 . . . . 5 (𝑥 = ∅ → ((𝐴 ·𝑜 𝑥) ⊆ (𝐵 ·𝑜 𝑥) ↔ (𝐴 ·𝑜 ∅) ⊆ (𝐵 ·𝑜 ∅)))
4 oveq2 6557 . . . . . 6 (𝑥 = 𝑦 → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 𝑦))
5 oveq2 6557 . . . . . 6 (𝑥 = 𝑦 → (𝐵 ·𝑜 𝑥) = (𝐵 ·𝑜 𝑦))
64, 5sseq12d 3597 . . . . 5 (𝑥 = 𝑦 → ((𝐴 ·𝑜 𝑥) ⊆ (𝐵 ·𝑜 𝑥) ↔ (𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦)))
7 oveq2 6557 . . . . . 6 (𝑥 = suc 𝑦 → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 suc 𝑦))
8 oveq2 6557 . . . . . 6 (𝑥 = suc 𝑦 → (𝐵 ·𝑜 𝑥) = (𝐵 ·𝑜 suc 𝑦))
97, 8sseq12d 3597 . . . . 5 (𝑥 = suc 𝑦 → ((𝐴 ·𝑜 𝑥) ⊆ (𝐵 ·𝑜 𝑥) ↔ (𝐴 ·𝑜 suc 𝑦) ⊆ (𝐵 ·𝑜 suc 𝑦)))
10 oveq2 6557 . . . . . 6 (𝑥 = 𝐶 → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 𝐶))
11 oveq2 6557 . . . . . 6 (𝑥 = 𝐶 → (𝐵 ·𝑜 𝑥) = (𝐵 ·𝑜 𝐶))
1210, 11sseq12d 3597 . . . . 5 (𝑥 = 𝐶 → ((𝐴 ·𝑜 𝑥) ⊆ (𝐵 ·𝑜 𝑥) ↔ (𝐴 ·𝑜 𝐶) ⊆ (𝐵 ·𝑜 𝐶)))
13 om0 7484 . . . . . . 7 (𝐴 ∈ On → (𝐴 ·𝑜 ∅) = ∅)
14 0ss 3924 . . . . . . 7 ∅ ⊆ (𝐵 ·𝑜 ∅)
1513, 14syl6eqss 3618 . . . . . 6 (𝐴 ∈ On → (𝐴 ·𝑜 ∅) ⊆ (𝐵 ·𝑜 ∅))
1615ad2antrr 758 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (𝐴 ·𝑜 ∅) ⊆ (𝐵 ·𝑜 ∅))
17 omcl 7503 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·𝑜 𝑦) ∈ On)
18173adant2 1073 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·𝑜 𝑦) ∈ On)
19 omcl 7503 . . . . . . . . . . . . . 14 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·𝑜 𝑦) ∈ On)
20193adant1 1072 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·𝑜 𝑦) ∈ On)
21 simp1 1054 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → 𝐴 ∈ On)
22 oawordri 7517 . . . . . . . . . . . . 13 (((𝐴 ·𝑜 𝑦) ∈ On ∧ (𝐵 ·𝑜 𝑦) ∈ On ∧ 𝐴 ∈ On) → ((𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦) → ((𝐴 ·𝑜 𝑦) +𝑜 𝐴) ⊆ ((𝐵 ·𝑜 𝑦) +𝑜 𝐴)))
2318, 20, 21, 22syl3anc 1318 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦) → ((𝐴 ·𝑜 𝑦) +𝑜 𝐴) ⊆ ((𝐵 ·𝑜 𝑦) +𝑜 𝐴)))
2423imp 444 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦)) → ((𝐴 ·𝑜 𝑦) +𝑜 𝐴) ⊆ ((𝐵 ·𝑜 𝑦) +𝑜 𝐴))
2524adantrl 748 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦))) → ((𝐴 ·𝑜 𝑦) +𝑜 𝐴) ⊆ ((𝐵 ·𝑜 𝑦) +𝑜 𝐴))
26 oaword 7516 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ (𝐵 ·𝑜 𝑦) ∈ On) → (𝐴𝐵 ↔ ((𝐵 ·𝑜 𝑦) +𝑜 𝐴) ⊆ ((𝐵 ·𝑜 𝑦) +𝑜 𝐵)))
2720, 26syld3an3 1363 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴𝐵 ↔ ((𝐵 ·𝑜 𝑦) +𝑜 𝐴) ⊆ ((𝐵 ·𝑜 𝑦) +𝑜 𝐵)))
2827biimpa 500 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ 𝐴𝐵) → ((𝐵 ·𝑜 𝑦) +𝑜 𝐴) ⊆ ((𝐵 ·𝑜 𝑦) +𝑜 𝐵))
2928adantrr 749 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦))) → ((𝐵 ·𝑜 𝑦) +𝑜 𝐴) ⊆ ((𝐵 ·𝑜 𝑦) +𝑜 𝐵))
3025, 29sstrd 3578 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦))) → ((𝐴 ·𝑜 𝑦) +𝑜 𝐴) ⊆ ((𝐵 ·𝑜 𝑦) +𝑜 𝐵))
31 omsuc 7493 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·𝑜 suc 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 𝐴))
32313adant2 1073 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·𝑜 suc 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 𝐴))
3332adantr 480 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦))) → (𝐴 ·𝑜 suc 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 𝐴))
34 omsuc 7493 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·𝑜 suc 𝑦) = ((𝐵 ·𝑜 𝑦) +𝑜 𝐵))
35343adant1 1072 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·𝑜 suc 𝑦) = ((𝐵 ·𝑜 𝑦) +𝑜 𝐵))
3635adantr 480 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦))) → (𝐵 ·𝑜 suc 𝑦) = ((𝐵 ·𝑜 𝑦) +𝑜 𝐵))
3730, 33, 363sstr4d 3611 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴𝐵 ∧ (𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦))) → (𝐴 ·𝑜 suc 𝑦) ⊆ (𝐵 ·𝑜 suc 𝑦))
3837exp520 1280 . . . . . . 7 (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (𝐴𝐵 → ((𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 suc 𝑦) ⊆ (𝐵 ·𝑜 suc 𝑦))))))
3938com3r 85 . . . . . 6 (𝑦 ∈ On → (𝐴 ∈ On → (𝐵 ∈ On → (𝐴𝐵 → ((𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 suc 𝑦) ⊆ (𝐵 ·𝑜 suc 𝑦))))))
4039imp4c 615 . . . . 5 (𝑦 ∈ On → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → ((𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 suc 𝑦) ⊆ (𝐵 ·𝑜 suc 𝑦))))
41 vex 3176 . . . . . . . 8 𝑥 ∈ V
42 ss2iun 4472 . . . . . . . . . 10 (∀𝑦𝑥 (𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦) → 𝑦𝑥 (𝐴 ·𝑜 𝑦) ⊆ 𝑦𝑥 (𝐵 ·𝑜 𝑦))
43 omlim 7500 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴 ·𝑜 𝑥) = 𝑦𝑥 (𝐴 ·𝑜 𝑦))
4443ad2ant2rl 781 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ (𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥))) → (𝐴 ·𝑜 𝑥) = 𝑦𝑥 (𝐴 ·𝑜 𝑦))
45 omlim 7500 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐵 ·𝑜 𝑥) = 𝑦𝑥 (𝐵 ·𝑜 𝑦))
4645adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ (𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥))) → (𝐵 ·𝑜 𝑥) = 𝑦𝑥 (𝐵 ·𝑜 𝑦))
4744, 46sseq12d 3597 . . . . . . . . . 10 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ (𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥))) → ((𝐴 ·𝑜 𝑥) ⊆ (𝐵 ·𝑜 𝑥) ↔ 𝑦𝑥 (𝐴 ·𝑜 𝑦) ⊆ 𝑦𝑥 (𝐵 ·𝑜 𝑦)))
4842, 47syl5ibr 235 . . . . . . . . 9 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ (𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥))) → (∀𝑦𝑥 (𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 𝑥) ⊆ (𝐵 ·𝑜 𝑥)))
4948anandirs 870 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (∀𝑦𝑥 (𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 𝑥) ⊆ (𝐵 ·𝑜 𝑥)))
5041, 49mpanr1 715 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝑥) → (∀𝑦𝑥 (𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 𝑥) ⊆ (𝐵 ·𝑜 𝑥)))
5150expcom 450 . . . . . 6 (Lim 𝑥 → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∀𝑦𝑥 (𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 𝑥) ⊆ (𝐵 ·𝑜 𝑥))))
5251adantrd 483 . . . . 5 (Lim 𝑥 → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (∀𝑦𝑥 (𝐴 ·𝑜 𝑦) ⊆ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 𝑥) ⊆ (𝐵 ·𝑜 𝑥))))
533, 6, 9, 12, 16, 40, 52tfinds3 6956 . . . 4 (𝐶 ∈ On → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (𝐴 ·𝑜 𝐶) ⊆ (𝐵 ·𝑜 𝐶)))
5453expd 451 . . 3 (𝐶 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐴 ·𝑜 𝐶) ⊆ (𝐵 ·𝑜 𝐶))))
55543impib 1254 . 2 ((𝐶 ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐴 ·𝑜 𝐶) ⊆ (𝐵 ·𝑜 𝐶)))
56553coml 1264 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴 ·𝑜 𝐶) ⊆ (𝐵 ·𝑜 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  wss 3540  c0 3874   ciun 4455  Oncon0 5640  Lim wlim 5641  suc csuc 5642  (class class class)co 6549   +𝑜 coa 7444   ·𝑜 comu 7445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-oadd 7451  df-omul 7452
This theorem is referenced by:  omword2  7541  oewordri  7559  oeordsuc  7561
  Copyright terms: Public domain W3C validator