Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omssubaddlem Structured version   Visualization version   GIF version

 Description: For any small margin 𝐸, we can find a covering approaching the outer measure of a set 𝐴 by that margin. (Contributed by Thierry Arnoux, 18-Sep-2019.) (Revised by AV, 4-Oct-2020.)
Hypotheses
Ref Expression
oms.m 𝑀 = (toOMeas‘𝑅)
oms.o (𝜑𝑄𝑉)
oms.r (𝜑𝑅:𝑄⟶(0[,]+∞))
omssubaddlem.m (𝜑 → (𝑀𝐴) ∈ ℝ)
Assertion
Ref Expression
omssubaddlem (𝜑 → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + 𝐸))
Distinct variable groups:   𝑥,𝑄,𝑧   𝑥,𝑅,𝑧   𝑥,𝑉,𝑧   𝜑,𝑥,𝑧   𝑤,𝐴,𝑥,𝑧   𝑥,𝐸   𝑥,𝑀   𝑤,𝑄   𝑤,𝑅   𝑤,𝑉
Allowed substitution hints:   𝜑(𝑤)   𝐸(𝑧,𝑤)   𝑀(𝑧,𝑤)

Dummy variables 𝑒 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omssubaddlem.m . . . . . 6 (𝜑 → (𝑀𝐴) ∈ ℝ)
2 omssubaddlem.e . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
32rpred 11748 . . . . . 6 (𝜑𝐸 ∈ ℝ)
41, 3readdcld 9948 . . . . 5 (𝜑 → ((𝑀𝐴) + 𝐸) ∈ ℝ)
54rexrd 9968 . . . 4 (𝜑 → ((𝑀𝐴) + 𝐸) ∈ ℝ*)
6 oms.o . . . . . . . . 9 (𝜑𝑄𝑉)
7 oms.r . . . . . . . . 9 (𝜑𝑅:𝑄⟶(0[,]+∞))
8 omsf 29685 . . . . . . . . 9 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞)) → (toOMeas‘𝑅):𝒫 dom 𝑅⟶(0[,]+∞))
96, 7, 8syl2anc 691 . . . . . . . 8 (𝜑 → (toOMeas‘𝑅):𝒫 dom 𝑅⟶(0[,]+∞))
10 oms.m . . . . . . . . 9 𝑀 = (toOMeas‘𝑅)
1110feq1i 5949 . . . . . . . 8 (𝑀:𝒫 dom 𝑅⟶(0[,]+∞) ↔ (toOMeas‘𝑅):𝒫 dom 𝑅⟶(0[,]+∞))
129, 11sylibr 223 . . . . . . 7 (𝜑𝑀:𝒫 dom 𝑅⟶(0[,]+∞))
13 omssubaddlem.a . . . . . . . . 9 (𝜑𝐴 𝑄)
14 fdm 5964 . . . . . . . . . . 11 (𝑅:𝑄⟶(0[,]+∞) → dom 𝑅 = 𝑄)
157, 14syl 17 . . . . . . . . . 10 (𝜑 → dom 𝑅 = 𝑄)
1615unieqd 4382 . . . . . . . . 9 (𝜑 dom 𝑅 = 𝑄)
1713, 16sseqtr4d 3605 . . . . . . . 8 (𝜑𝐴 dom 𝑅)
18 uniexg 6853 . . . . . . . . . . 11 (𝑄𝑉 𝑄 ∈ V)
196, 18syl 17 . . . . . . . . . 10 (𝜑 𝑄 ∈ V)
2013, 19jca 553 . . . . . . . . 9 (𝜑 → (𝐴 𝑄 𝑄 ∈ V))
21 ssexg 4732 . . . . . . . . 9 ((𝐴 𝑄 𝑄 ∈ V) → 𝐴 ∈ V)
22 elpwg 4116 . . . . . . . . 9 (𝐴 ∈ V → (𝐴 ∈ 𝒫 dom 𝑅𝐴 dom 𝑅))
2320, 21, 223syl 18 . . . . . . . 8 (𝜑 → (𝐴 ∈ 𝒫 dom 𝑅𝐴 dom 𝑅))
2417, 23mpbird 246 . . . . . . 7 (𝜑𝐴 ∈ 𝒫 dom 𝑅)
2512, 24ffvelrnd 6268 . . . . . 6 (𝜑 → (𝑀𝐴) ∈ (0[,]+∞))
26 elxrge0 12152 . . . . . . 7 ((𝑀𝐴) ∈ (0[,]+∞) ↔ ((𝑀𝐴) ∈ ℝ* ∧ 0 ≤ (𝑀𝐴)))
2726simprbi 479 . . . . . 6 ((𝑀𝐴) ∈ (0[,]+∞) → 0 ≤ (𝑀𝐴))
2825, 27syl 17 . . . . 5 (𝜑 → 0 ≤ (𝑀𝐴))
292rpge0d 11752 . . . . 5 (𝜑 → 0 ≤ 𝐸)
301, 3, 28, 29addge0d 10482 . . . 4 (𝜑 → 0 ≤ ((𝑀𝐴) + 𝐸))
31 elxrge0 12152 . . . 4 (((𝑀𝐴) + 𝐸) ∈ (0[,]+∞) ↔ (((𝑀𝐴) + 𝐸) ∈ ℝ* ∧ 0 ≤ ((𝑀𝐴) + 𝐸)))
325, 30, 31sylanbrc 695 . . 3 (𝜑 → ((𝑀𝐴) + 𝐸) ∈ (0[,]+∞))
3310fveq1i 6104 . . . . 5 (𝑀𝐴) = ((toOMeas‘𝑅)‘𝐴)
34 omsfval 29683 . . . . . 6 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → ((toOMeas‘𝑅)‘𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ))
356, 7, 13, 34syl3anc 1318 . . . . 5 (𝜑 → ((toOMeas‘𝑅)‘𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ))
3633, 35syl5req 2657 . . . 4 (𝜑 → inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ) = (𝑀𝐴))
371, 2ltaddrpd 11781 . . . 4 (𝜑 → (𝑀𝐴) < ((𝑀𝐴) + 𝐸))
3836, 37eqbrtrd 4605 . . 3 (𝜑 → inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ) < ((𝑀𝐴) + 𝐸))
39 iccssxr 12127 . . . . . 6 (0[,]+∞) ⊆ ℝ*
40 xrltso 11850 . . . . . 6 < Or ℝ*
41 soss 4977 . . . . . 6 ((0[,]+∞) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]+∞)))
4239, 40, 41mp2 9 . . . . 5 < Or (0[,]+∞)
4342a1i 11 . . . 4 (𝜑 → < Or (0[,]+∞))
44 omscl 29684 . . . . . 6 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ∈ 𝒫 dom 𝑅) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ⊆ (0[,]+∞))
456, 7, 24, 44syl3anc 1318 . . . . 5 (𝜑 → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ⊆ (0[,]+∞))
46 xrge0infss 28915 . . . . 5 (ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ⊆ (0[,]+∞) → ∃𝑒 ∈ (0[,]+∞)(∀𝑡 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ¬ 𝑡 < 𝑒 ∧ ∀𝑡 ∈ (0[,]+∞)(𝑒 < 𝑡 → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < 𝑡)))
4745, 46syl 17 . . . 4 (𝜑 → ∃𝑒 ∈ (0[,]+∞)(∀𝑡 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ¬ 𝑡 < 𝑒 ∧ ∀𝑡 ∈ (0[,]+∞)(𝑒 < 𝑡 → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < 𝑡)))
4843, 47infglb 8279 . . 3 (𝜑 → ((((𝑀𝐴) + 𝐸) ∈ (0[,]+∞) ∧ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)), (0[,]+∞), < ) < ((𝑀𝐴) + 𝐸)) → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < ((𝑀𝐴) + 𝐸)))
4932, 38, 48mp2and 711 . 2 (𝜑 → ∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < ((𝑀𝐴) + 𝐸))
50 eqid 2610 . . . . . . . 8 (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) = (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))
51 esumex 29418 . . . . . . . 8 Σ*𝑤𝑥(𝑅𝑤) ∈ V
5250, 51elrnmpti 5297 . . . . . . 7 (𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}𝑢 = Σ*𝑤𝑥(𝑅𝑤))
5352anbi1i 727 . . . . . 6 ((𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)) ↔ (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)))
54 r19.41v 3070 . . . . . 6 (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} (𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)) ↔ (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)))
5553, 54bitr4i 266 . . . . 5 ((𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} (𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)))
5655exbii 1764 . . . 4 (∃𝑢(𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)) ↔ ∃𝑢𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} (𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)))
57 df-rex 2902 . . . 4 (∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < ((𝑀𝐴) + 𝐸) ↔ ∃𝑢(𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤)) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)))
58 rexcom4 3198 . . . 4 (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}∃𝑢(𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)) ↔ ∃𝑢𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} (𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)))
5956, 57, 583bitr4i 291 . . 3 (∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < ((𝑀𝐴) + 𝐸) ↔ ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}∃𝑢(𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)))
60 breq1 4586 . . . . . 6 (𝑢 = Σ*𝑤𝑥(𝑅𝑤) → (𝑢 < ((𝑀𝐴) + 𝐸) ↔ Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + 𝐸)))
6160biimpa 500 . . . . 5 ((𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)) → Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + 𝐸))
6261exlimiv 1845 . . . 4 (∃𝑢(𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)) → Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + 𝐸))
6362reximi 2994 . . 3 (∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}∃𝑢(𝑢 = Σ*𝑤𝑥(𝑅𝑤) ∧ 𝑢 < ((𝑀𝐴) + 𝐸)) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + 𝐸))
6459, 63sylbi 206 . 2 (∃𝑢 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑤𝑥(𝑅𝑤))𝑢 < ((𝑀𝐴) + 𝐸) → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + 𝐸))
6549, 64syl 17 1 (𝜑 → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + 𝐸))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475  ∃wex 1695   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897  {crab 2900  Vcvv 3173   ⊆ wss 3540  𝒫 cpw 4108  ∪ cuni 4372   class class class wbr 4583   ↦ cmpt 4643   Or wor 4958  dom cdm 5038  ran crn 5039  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ωcom 6957   ≼ cdom 7839  infcinf 8230  ℝcr 9814  0cc0 9815   + caddc 9818  +∞cpnf 9950  ℝ*cxr 9952   < clt 9953   ≤ cle 9954  ℝ+crp 11708  [,]cicc 12049  Σ*cesum 29416  toOMeascoms 29680 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xadd 11823  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-tset 15787  df-ple 15788  df-ds 15791  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-ordt 15984  df-xrs 15985  df-mre 16069  df-mrc 16070  df-acs 16072  df-ps 17023  df-tsr 17024  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-cntz 17573  df-cmn 18018  df-fbas 19564  df-fg 19565  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-ntr 20634  df-nei 20712  df-cn 20841  df-haus 20929  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-tsms 21740  df-esum 29417  df-oms 29681 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator