Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > omscl | Structured version Visualization version GIF version |
Description: A closure lemma for the constructed outer measure. (Contributed by Thierry Arnoux, 17-Sep-2019.) |
Ref | Expression |
---|---|
omscl | ⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)) ⊆ (0[,]+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3176 | . . . 4 ⊢ 𝑥 ∈ V | |
2 | simp2 1055 | . . . . . . 7 ⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅) → 𝑅:𝑄⟶(0[,]+∞)) | |
3 | 2 | ad2antrr 758 | . . . . . 6 ⊢ ((((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}) ∧ 𝑦 ∈ 𝑥) → 𝑅:𝑄⟶(0[,]+∞)) |
4 | ssrab2 3650 | . . . . . . . . . 10 ⊢ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ⊆ 𝒫 dom 𝑅 | |
5 | simpr 476 | . . . . . . . . . 10 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}) → 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}) | |
6 | 4, 5 | sseldi 3566 | . . . . . . . . 9 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}) → 𝑥 ∈ 𝒫 dom 𝑅) |
7 | fdm 5964 | . . . . . . . . . . . 12 ⊢ (𝑅:𝑄⟶(0[,]+∞) → dom 𝑅 = 𝑄) | |
8 | 7 | pweqd 4113 | . . . . . . . . . . 11 ⊢ (𝑅:𝑄⟶(0[,]+∞) → 𝒫 dom 𝑅 = 𝒫 𝑄) |
9 | 2, 8 | syl 17 | . . . . . . . . . 10 ⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅) → 𝒫 dom 𝑅 = 𝒫 𝑄) |
10 | 9 | adantr 480 | . . . . . . . . 9 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}) → 𝒫 dom 𝑅 = 𝒫 𝑄) |
11 | 6, 10 | eleqtrd 2690 | . . . . . . . 8 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}) → 𝑥 ∈ 𝒫 𝑄) |
12 | elpwi 4117 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝒫 𝑄 → 𝑥 ⊆ 𝑄) | |
13 | 11, 12 | syl 17 | . . . . . . 7 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}) → 𝑥 ⊆ 𝑄) |
14 | 13 | sselda 3568 | . . . . . 6 ⊢ ((((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝑄) |
15 | 3, 14 | ffvelrnd 6268 | . . . . 5 ⊢ ((((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}) ∧ 𝑦 ∈ 𝑥) → (𝑅‘𝑦) ∈ (0[,]+∞)) |
16 | 15 | ralrimiva 2949 | . . . 4 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}) → ∀𝑦 ∈ 𝑥 (𝑅‘𝑦) ∈ (0[,]+∞)) |
17 | nfcv 2751 | . . . . 5 ⊢ Ⅎ𝑦𝑥 | |
18 | 17 | esumcl 29419 | . . . 4 ⊢ ((𝑥 ∈ V ∧ ∀𝑦 ∈ 𝑥 (𝑅‘𝑦) ∈ (0[,]+∞)) → Σ*𝑦 ∈ 𝑥(𝑅‘𝑦) ∈ (0[,]+∞)) |
19 | 1, 16, 18 | sylancr 694 | . . 3 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}) → Σ*𝑦 ∈ 𝑥(𝑅‘𝑦) ∈ (0[,]+∞)) |
20 | 19 | ralrimiva 2949 | . 2 ⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅) → ∀𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}Σ*𝑦 ∈ 𝑥(𝑅‘𝑦) ∈ (0[,]+∞)) |
21 | eqid 2610 | . . 3 ⊢ (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)) = (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)) | |
22 | 21 | rnmptss 6299 | . 2 ⊢ (∀𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}Σ*𝑦 ∈ 𝑥(𝑅‘𝑦) ∈ (0[,]+∞) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)) ⊆ (0[,]+∞)) |
23 | 20, 22 | syl 17 | 1 ⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)) ⊆ (0[,]+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ∀wral 2896 {crab 2900 Vcvv 3173 ⊆ wss 3540 𝒫 cpw 4108 ∪ cuni 4372 class class class wbr 4583 ↦ cmpt 4643 dom cdm 5038 ran crn 5039 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 ωcom 6957 ≼ cdom 7839 0cc0 9815 +∞cpnf 9950 [,]cicc 12049 Σ*cesum 29416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-fal 1481 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-iin 4458 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-se 4998 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-isom 5813 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-of 6795 df-om 6958 df-1st 7059 df-2nd 7060 df-supp 7183 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-map 7746 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-fsupp 8159 df-fi 8200 df-sup 8231 df-inf 8232 df-oi 8298 df-card 8648 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-7 10961 df-8 10962 df-9 10963 df-n0 11170 df-z 11255 df-dec 11370 df-uz 11564 df-q 11665 df-xadd 11823 df-ioo 12050 df-ioc 12051 df-ico 12052 df-icc 12053 df-fz 12198 df-fzo 12335 df-seq 12664 df-hash 12980 df-struct 15697 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-ress 15702 df-plusg 15781 df-mulr 15782 df-tset 15787 df-ple 15788 df-ds 15791 df-rest 15906 df-topn 15907 df-0g 15925 df-gsum 15926 df-topgen 15927 df-ordt 15984 df-xrs 15985 df-mre 16069 df-mrc 16070 df-acs 16072 df-ps 17023 df-tsr 17024 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-submnd 17159 df-cntz 17573 df-cmn 18018 df-fbas 19564 df-fg 19565 df-top 20521 df-bases 20522 df-topon 20523 df-topsp 20524 df-ntr 20634 df-nei 20712 df-cn 20841 df-haus 20929 df-fil 21460 df-fm 21552 df-flim 21553 df-flf 21554 df-tsms 21740 df-esum 29417 |
This theorem is referenced by: omsf 29685 omssubaddlem 29688 omssubadd 29689 |
Copyright terms: Public domain | W3C validator |