MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omord2 Structured version   Visualization version   GIF version

Theorem omord2 7534
Description: Ordering property of ordinal multiplication. (Contributed by NM, 25-Dec-2004.)
Assertion
Ref Expression
omord2 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))

Proof of Theorem omord2
StepHypRef Expression
1 omordi 7533 . . 3 (((𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))
213adantl1 1210 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))
3 oveq2 6557 . . . . . 6 (𝐴 = 𝐵 → (𝐶 ·𝑜 𝐴) = (𝐶 ·𝑜 𝐵))
43a1i 11 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴 = 𝐵 → (𝐶 ·𝑜 𝐴) = (𝐶 ·𝑜 𝐵)))
5 omordi 7533 . . . . . 6 (((𝐴 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐵𝐴 → (𝐶 ·𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐴)))
653adantl2 1211 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐵𝐴 → (𝐶 ·𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐴)))
74, 6orim12d 879 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → ((𝐴 = 𝐵𝐵𝐴) → ((𝐶 ·𝑜 𝐴) = (𝐶 ·𝑜 𝐵) ∨ (𝐶 ·𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐴))))
87con3d 147 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (¬ ((𝐶 ·𝑜 𝐴) = (𝐶 ·𝑜 𝐵) ∨ (𝐶 ·𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐴)) → ¬ (𝐴 = 𝐵𝐵𝐴)))
9 omcl 7503 . . . . . . . 8 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐶 ·𝑜 𝐴) ∈ On)
10 omcl 7503 . . . . . . . 8 ((𝐶 ∈ On ∧ 𝐵 ∈ On) → (𝐶 ·𝑜 𝐵) ∈ On)
11 eloni 5650 . . . . . . . . 9 ((𝐶 ·𝑜 𝐴) ∈ On → Ord (𝐶 ·𝑜 𝐴))
12 eloni 5650 . . . . . . . . 9 ((𝐶 ·𝑜 𝐵) ∈ On → Ord (𝐶 ·𝑜 𝐵))
13 ordtri2 5675 . . . . . . . . 9 ((Ord (𝐶 ·𝑜 𝐴) ∧ Ord (𝐶 ·𝑜 𝐵)) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) ↔ ¬ ((𝐶 ·𝑜 𝐴) = (𝐶 ·𝑜 𝐵) ∨ (𝐶 ·𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐴))))
1411, 12, 13syl2an 493 . . . . . . . 8 (((𝐶 ·𝑜 𝐴) ∈ On ∧ (𝐶 ·𝑜 𝐵) ∈ On) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) ↔ ¬ ((𝐶 ·𝑜 𝐴) = (𝐶 ·𝑜 𝐵) ∨ (𝐶 ·𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐴))))
159, 10, 14syl2an 493 . . . . . . 7 (((𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐵 ∈ On)) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) ↔ ¬ ((𝐶 ·𝑜 𝐴) = (𝐶 ·𝑜 𝐵) ∨ (𝐶 ·𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐴))))
1615anandis 869 . . . . . 6 ((𝐶 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) ↔ ¬ ((𝐶 ·𝑜 𝐴) = (𝐶 ·𝑜 𝐵) ∨ (𝐶 ·𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐴))))
1716ancoms 468 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) ↔ ¬ ((𝐶 ·𝑜 𝐴) = (𝐶 ·𝑜 𝐵) ∨ (𝐶 ·𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐴))))
18173impa 1251 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) ↔ ¬ ((𝐶 ·𝑜 𝐴) = (𝐶 ·𝑜 𝐵) ∨ (𝐶 ·𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐴))))
1918adantr 480 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) ↔ ¬ ((𝐶 ·𝑜 𝐴) = (𝐶 ·𝑜 𝐵) ∨ (𝐶 ·𝑜 𝐵) ∈ (𝐶 ·𝑜 𝐴))))
20 eloni 5650 . . . . . 6 (𝐴 ∈ On → Ord 𝐴)
21 eloni 5650 . . . . . 6 (𝐵 ∈ On → Ord 𝐵)
22 ordtri2 5675 . . . . . 6 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
2320, 21, 22syl2an 493 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
24233adant3 1074 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
2524adantr 480 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
268, 19, 253imtr4d 282 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) → 𝐴𝐵))
272, 26impbid 201 1 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  c0 3874  Ord word 5639  Oncon0 5640  (class class class)co 6549   ·𝑜 comu 7445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-oadd 7451  df-omul 7452
This theorem is referenced by:  omord  7535  omword  7537  oeeui  7569  omabs  7614  omxpenlem  7946  cantnflt  8452  cnfcom  8480
  Copyright terms: Public domain W3C validator