Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > omord | Structured version Visualization version GIF version |
Description: Ordering property of ordinal multiplication. Proposition 8.19 of [TakeutiZaring] p. 63. (Contributed by NM, 14-Dec-2004.) |
Ref | Expression |
---|---|
omord | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omord2 7534 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴 ∈ 𝐵 ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵))) | |
2 | 1 | ex 449 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ 𝐶 → (𝐴 ∈ 𝐵 ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)))) |
3 | 2 | pm5.32rd 670 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶) ↔ ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) ∧ ∅ ∈ 𝐶))) |
4 | simpl 472 | . . 3 ⊢ (((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) ∧ ∅ ∈ 𝐶) → (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵)) | |
5 | ne0i 3880 | . . . . . . . 8 ⊢ ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) → (𝐶 ·𝑜 𝐵) ≠ ∅) | |
6 | om0r 7506 | . . . . . . . . . 10 ⊢ (𝐵 ∈ On → (∅ ·𝑜 𝐵) = ∅) | |
7 | oveq1 6556 | . . . . . . . . . . 11 ⊢ (𝐶 = ∅ → (𝐶 ·𝑜 𝐵) = (∅ ·𝑜 𝐵)) | |
8 | 7 | eqeq1d 2612 | . . . . . . . . . 10 ⊢ (𝐶 = ∅ → ((𝐶 ·𝑜 𝐵) = ∅ ↔ (∅ ·𝑜 𝐵) = ∅)) |
9 | 6, 8 | syl5ibrcom 236 | . . . . . . . . 9 ⊢ (𝐵 ∈ On → (𝐶 = ∅ → (𝐶 ·𝑜 𝐵) = ∅)) |
10 | 9 | necon3d 2803 | . . . . . . . 8 ⊢ (𝐵 ∈ On → ((𝐶 ·𝑜 𝐵) ≠ ∅ → 𝐶 ≠ ∅)) |
11 | 5, 10 | syl5 33 | . . . . . . 7 ⊢ (𝐵 ∈ On → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) → 𝐶 ≠ ∅)) |
12 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) → 𝐶 ≠ ∅)) |
13 | on0eln0 5697 | . . . . . . 7 ⊢ (𝐶 ∈ On → (∅ ∈ 𝐶 ↔ 𝐶 ≠ ∅)) | |
14 | 13 | adantl 481 | . . . . . 6 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ 𝐶 ↔ 𝐶 ≠ ∅)) |
15 | 12, 14 | sylibrd 248 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) → ∅ ∈ 𝐶)) |
16 | 15 | 3adant1 1072 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) → ∅ ∈ 𝐶)) |
17 | 16 | ancld 574 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) → ((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) ∧ ∅ ∈ 𝐶))) |
18 | 4, 17 | impbid2 215 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (((𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵) ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵))) |
19 | 3, 18 | bitrd 267 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·𝑜 𝐴) ∈ (𝐶 ·𝑜 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 ∅c0 3874 Oncon0 5640 (class class class)co 6549 ·𝑜 comu 7445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-oadd 7451 df-omul 7452 |
This theorem is referenced by: omlimcl 7545 oneo 7548 |
Copyright terms: Public domain | W3C validator |