MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2uzuzi Structured version   Visualization version   GIF version

Theorem om2uzuzi 12610
Description: The value 𝐺 (see om2uz0i 12608) at an ordinal natural number is in the upper integers. (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.)
Hypotheses
Ref Expression
om2uz.1 𝐶 ∈ ℤ
om2uz.2 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
Assertion
Ref Expression
om2uzuzi (𝐴 ∈ ω → (𝐺𝐴) ∈ (ℤ𝐶))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐺(𝑥)

Proof of Theorem om2uzuzi
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6103 . . 3 (𝑦 = ∅ → (𝐺𝑦) = (𝐺‘∅))
21eleq1d 2672 . 2 (𝑦 = ∅ → ((𝐺𝑦) ∈ (ℤ𝐶) ↔ (𝐺‘∅) ∈ (ℤ𝐶)))
3 fveq2 6103 . . 3 (𝑦 = 𝑧 → (𝐺𝑦) = (𝐺𝑧))
43eleq1d 2672 . 2 (𝑦 = 𝑧 → ((𝐺𝑦) ∈ (ℤ𝐶) ↔ (𝐺𝑧) ∈ (ℤ𝐶)))
5 fveq2 6103 . . 3 (𝑦 = suc 𝑧 → (𝐺𝑦) = (𝐺‘suc 𝑧))
65eleq1d 2672 . 2 (𝑦 = suc 𝑧 → ((𝐺𝑦) ∈ (ℤ𝐶) ↔ (𝐺‘suc 𝑧) ∈ (ℤ𝐶)))
7 fveq2 6103 . . 3 (𝑦 = 𝐴 → (𝐺𝑦) = (𝐺𝐴))
87eleq1d 2672 . 2 (𝑦 = 𝐴 → ((𝐺𝑦) ∈ (ℤ𝐶) ↔ (𝐺𝐴) ∈ (ℤ𝐶)))
9 om2uz.1 . . . 4 𝐶 ∈ ℤ
10 om2uz.2 . . . 4 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
119, 10om2uz0i 12608 . . 3 (𝐺‘∅) = 𝐶
12 uzid 11578 . . . 4 (𝐶 ∈ ℤ → 𝐶 ∈ (ℤ𝐶))
139, 12ax-mp 5 . . 3 𝐶 ∈ (ℤ𝐶)
1411, 13eqeltri 2684 . 2 (𝐺‘∅) ∈ (ℤ𝐶)
15 peano2uz 11617 . . 3 ((𝐺𝑧) ∈ (ℤ𝐶) → ((𝐺𝑧) + 1) ∈ (ℤ𝐶))
169, 10om2uzsuci 12609 . . . 4 (𝑧 ∈ ω → (𝐺‘suc 𝑧) = ((𝐺𝑧) + 1))
1716eleq1d 2672 . . 3 (𝑧 ∈ ω → ((𝐺‘suc 𝑧) ∈ (ℤ𝐶) ↔ ((𝐺𝑧) + 1) ∈ (ℤ𝐶)))
1815, 17syl5ibr 235 . 2 (𝑧 ∈ ω → ((𝐺𝑧) ∈ (ℤ𝐶) → (𝐺‘suc 𝑧) ∈ (ℤ𝐶)))
192, 4, 6, 8, 14, 18finds 6984 1 (𝐴 ∈ ω → (𝐺𝐴) ∈ (ℤ𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  Vcvv 3173  c0 3874  cmpt 4643  cres 5040  suc csuc 5642  cfv 5804  (class class class)co 6549  ωcom 6957  reccrdg 7392  1c1 9816   + caddc 9818  cz 11254  cuz 11563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564
This theorem is referenced by:  om2uzlti  12611  om2uzlt2i  12612  om2uzrani  12613  om2uzf1oi  12614  uzrdgfni  12619  uzrdgxfr  12628  unbenlem  15450
  Copyright terms: Public domain W3C validator