MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om1r Structured version   Visualization version   GIF version

Theorem om1r 7510
Description: Ordinal multiplication with 1. Proposition 8.18(2) of [TakeutiZaring] p. 63. (Contributed by NM, 3-Aug-2004.)
Assertion
Ref Expression
om1r (𝐴 ∈ On → (1𝑜 ·𝑜 𝐴) = 𝐴)

Proof of Theorem om1r
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6557 . . 3 (𝑥 = ∅ → (1𝑜 ·𝑜 𝑥) = (1𝑜 ·𝑜 ∅))
2 id 22 . . 3 (𝑥 = ∅ → 𝑥 = ∅)
31, 2eqeq12d 2625 . 2 (𝑥 = ∅ → ((1𝑜 ·𝑜 𝑥) = 𝑥 ↔ (1𝑜 ·𝑜 ∅) = ∅))
4 oveq2 6557 . . 3 (𝑥 = 𝑦 → (1𝑜 ·𝑜 𝑥) = (1𝑜 ·𝑜 𝑦))
5 id 22 . . 3 (𝑥 = 𝑦𝑥 = 𝑦)
64, 5eqeq12d 2625 . 2 (𝑥 = 𝑦 → ((1𝑜 ·𝑜 𝑥) = 𝑥 ↔ (1𝑜 ·𝑜 𝑦) = 𝑦))
7 oveq2 6557 . . 3 (𝑥 = suc 𝑦 → (1𝑜 ·𝑜 𝑥) = (1𝑜 ·𝑜 suc 𝑦))
8 id 22 . . 3 (𝑥 = suc 𝑦𝑥 = suc 𝑦)
97, 8eqeq12d 2625 . 2 (𝑥 = suc 𝑦 → ((1𝑜 ·𝑜 𝑥) = 𝑥 ↔ (1𝑜 ·𝑜 suc 𝑦) = suc 𝑦))
10 oveq2 6557 . . 3 (𝑥 = 𝐴 → (1𝑜 ·𝑜 𝑥) = (1𝑜 ·𝑜 𝐴))
11 id 22 . . 3 (𝑥 = 𝐴𝑥 = 𝐴)
1210, 11eqeq12d 2625 . 2 (𝑥 = 𝐴 → ((1𝑜 ·𝑜 𝑥) = 𝑥 ↔ (1𝑜 ·𝑜 𝐴) = 𝐴))
13 om0x 7486 . 2 (1𝑜 ·𝑜 ∅) = ∅
14 1on 7454 . . . . . 6 1𝑜 ∈ On
15 omsuc 7493 . . . . . 6 ((1𝑜 ∈ On ∧ 𝑦 ∈ On) → (1𝑜 ·𝑜 suc 𝑦) = ((1𝑜 ·𝑜 𝑦) +𝑜 1𝑜))
1614, 15mpan 702 . . . . 5 (𝑦 ∈ On → (1𝑜 ·𝑜 suc 𝑦) = ((1𝑜 ·𝑜 𝑦) +𝑜 1𝑜))
17 oveq1 6556 . . . . 5 ((1𝑜 ·𝑜 𝑦) = 𝑦 → ((1𝑜 ·𝑜 𝑦) +𝑜 1𝑜) = (𝑦 +𝑜 1𝑜))
1816, 17sylan9eq 2664 . . . 4 ((𝑦 ∈ On ∧ (1𝑜 ·𝑜 𝑦) = 𝑦) → (1𝑜 ·𝑜 suc 𝑦) = (𝑦 +𝑜 1𝑜))
19 oa1suc 7498 . . . . 5 (𝑦 ∈ On → (𝑦 +𝑜 1𝑜) = suc 𝑦)
2019adantr 480 . . . 4 ((𝑦 ∈ On ∧ (1𝑜 ·𝑜 𝑦) = 𝑦) → (𝑦 +𝑜 1𝑜) = suc 𝑦)
2118, 20eqtrd 2644 . . 3 ((𝑦 ∈ On ∧ (1𝑜 ·𝑜 𝑦) = 𝑦) → (1𝑜 ·𝑜 suc 𝑦) = suc 𝑦)
2221ex 449 . 2 (𝑦 ∈ On → ((1𝑜 ·𝑜 𝑦) = 𝑦 → (1𝑜 ·𝑜 suc 𝑦) = suc 𝑦))
23 iuneq2 4473 . . . 4 (∀𝑦𝑥 (1𝑜 ·𝑜 𝑦) = 𝑦 𝑦𝑥 (1𝑜 ·𝑜 𝑦) = 𝑦𝑥 𝑦)
24 uniiun 4509 . . . 4 𝑥 = 𝑦𝑥 𝑦
2523, 24syl6eqr 2662 . . 3 (∀𝑦𝑥 (1𝑜 ·𝑜 𝑦) = 𝑦 𝑦𝑥 (1𝑜 ·𝑜 𝑦) = 𝑥)
26 vex 3176 . . . . 5 𝑥 ∈ V
27 omlim 7500 . . . . . 6 ((1𝑜 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (1𝑜 ·𝑜 𝑥) = 𝑦𝑥 (1𝑜 ·𝑜 𝑦))
2814, 27mpan 702 . . . . 5 ((𝑥 ∈ V ∧ Lim 𝑥) → (1𝑜 ·𝑜 𝑥) = 𝑦𝑥 (1𝑜 ·𝑜 𝑦))
2926, 28mpan 702 . . . 4 (Lim 𝑥 → (1𝑜 ·𝑜 𝑥) = 𝑦𝑥 (1𝑜 ·𝑜 𝑦))
30 limuni 5702 . . . 4 (Lim 𝑥𝑥 = 𝑥)
3129, 30eqeq12d 2625 . . 3 (Lim 𝑥 → ((1𝑜 ·𝑜 𝑥) = 𝑥 𝑦𝑥 (1𝑜 ·𝑜 𝑦) = 𝑥))
3225, 31syl5ibr 235 . 2 (Lim 𝑥 → (∀𝑦𝑥 (1𝑜 ·𝑜 𝑦) = 𝑦 → (1𝑜 ·𝑜 𝑥) = 𝑥))
333, 6, 9, 12, 13, 22, 32tfinds 6951 1 (𝐴 ∈ On → (1𝑜 ·𝑜 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  c0 3874   cuni 4372   ciun 4455  Oncon0 5640  Lim wlim 5641  suc csuc 5642  (class class class)co 6549  1𝑜c1o 7440   +𝑜 coa 7444   ·𝑜 comu 7445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-omul 7452
This theorem is referenced by:  oe1  7511  omword2  7541
  Copyright terms: Public domain W3C validator