Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  oi0 Structured version   Visualization version   GIF version

Theorem oi0 8316
 Description: Definition of the ordinal isomorphism when its arguments are not meaningful. (Contributed by Mario Carneiro, 25-Jun-2015.)
Hypothesis
Ref Expression
oicl.1 𝐹 = OrdIso(𝑅, 𝐴)
Assertion
Ref Expression
oi0 (¬ (𝑅 We 𝐴𝑅 Se 𝐴) → 𝐹 = ∅)

Proof of Theorem oi0
Dummy variables 𝑢 𝑡 𝑣 𝑥 𝑗 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oicl.1 . . 3 𝐹 = OrdIso(𝑅, 𝐴)
2 df-oi 8298 . . 3 OrdIso(𝑅, 𝐴) = if((𝑅 We 𝐴𝑅 Se 𝐴), (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) ↾ {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑥)𝑧𝑅𝑡}), ∅)
31, 2eqtri 2632 . 2 𝐹 = if((𝑅 We 𝐴𝑅 Se 𝐴), (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) ↾ {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑥)𝑧𝑅𝑡}), ∅)
4 iffalse 4045 . 2 (¬ (𝑅 We 𝐴𝑅 Se 𝐴) → if((𝑅 We 𝐴𝑅 Se 𝐴), (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) ↾ {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑥)𝑧𝑅𝑡}), ∅) = ∅)
53, 4syl5eq 2656 1 (¬ (𝑅 We 𝐴𝑅 Se 𝐴) → 𝐹 = ∅)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1475  ∀wral 2896  ∃wrex 2897  {crab 2900  Vcvv 3173  ∅c0 3874  ifcif 4036   class class class wbr 4583   ↦ cmpt 4643   Se wse 4995   We wwe 4996  ran crn 5039   ↾ cres 5040   “ cima 5041  Oncon0 5640  ℩crio 6510  recscrecs 7354  OrdIsocoi 8297 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-if 4037  df-oi 8298 This theorem is referenced by:  oicl  8317  oif  8318  oiexg  8323
 Copyright terms: Public domain W3C validator