Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ogrpinvOLD Structured version   Visualization version   GIF version

Theorem ogrpinvOLD 29046
Description: In an ordered group, the ordering is compatible with group inverse. (Contributed by Thierry Arnoux, 30-Jan-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
ogrpsub.0 𝐵 = (Base‘𝐺)
ogrpsub.1 = (le‘𝐺)
ogrpinv.2 𝐼 = (invg𝐺)
ogrpinv.3 0 = (0g𝐺)
Assertion
Ref Expression
ogrpinvOLD ((𝐺 ∈ oGrp ∧ 𝑋𝐵0 𝑋) → (𝐼𝑋) 0 )

Proof of Theorem ogrpinvOLD
StepHypRef Expression
1 isogrp 29033 . . . . 5 (𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd))
21simprbi 479 . . . 4 (𝐺 ∈ oGrp → 𝐺 ∈ oMnd)
323ad2ant1 1075 . . 3 ((𝐺 ∈ oGrp ∧ 𝑋𝐵0 𝑋) → 𝐺 ∈ oMnd)
41simplbi 475 . . . . 5 (𝐺 ∈ oGrp → 𝐺 ∈ Grp)
543ad2ant1 1075 . . . 4 ((𝐺 ∈ oGrp ∧ 𝑋𝐵0 𝑋) → 𝐺 ∈ Grp)
6 ogrpsub.0 . . . . 5 𝐵 = (Base‘𝐺)
7 ogrpinv.3 . . . . 5 0 = (0g𝐺)
86, 7grpidcl 17273 . . . 4 (𝐺 ∈ Grp → 0𝐵)
95, 8syl 17 . . 3 ((𝐺 ∈ oGrp ∧ 𝑋𝐵0 𝑋) → 0𝐵)
10 simp2 1055 . . 3 ((𝐺 ∈ oGrp ∧ 𝑋𝐵0 𝑋) → 𝑋𝐵)
11 ogrpinv.2 . . . . 5 𝐼 = (invg𝐺)
126, 11grpinvcl 17290 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝐼𝑋) ∈ 𝐵)
135, 10, 12syl2anc 691 . . 3 ((𝐺 ∈ oGrp ∧ 𝑋𝐵0 𝑋) → (𝐼𝑋) ∈ 𝐵)
14 simp3 1056 . . 3 ((𝐺 ∈ oGrp ∧ 𝑋𝐵0 𝑋) → 0 𝑋)
15 ogrpsub.1 . . . 4 = (le‘𝐺)
16 eqid 2610 . . . 4 (+g𝐺) = (+g𝐺)
176, 15, 16omndadd 29037 . . 3 ((𝐺 ∈ oMnd ∧ ( 0𝐵𝑋𝐵 ∧ (𝐼𝑋) ∈ 𝐵) ∧ 0 𝑋) → ( 0 (+g𝐺)(𝐼𝑋)) (𝑋(+g𝐺)(𝐼𝑋)))
183, 9, 10, 13, 14, 17syl131anc 1331 . 2 ((𝐺 ∈ oGrp ∧ 𝑋𝐵0 𝑋) → ( 0 (+g𝐺)(𝐼𝑋)) (𝑋(+g𝐺)(𝐼𝑋)))
196, 16, 7grplid 17275 . . 3 ((𝐺 ∈ Grp ∧ (𝐼𝑋) ∈ 𝐵) → ( 0 (+g𝐺)(𝐼𝑋)) = (𝐼𝑋))
205, 13, 19syl2anc 691 . 2 ((𝐺 ∈ oGrp ∧ 𝑋𝐵0 𝑋) → ( 0 (+g𝐺)(𝐼𝑋)) = (𝐼𝑋))
216, 16, 7, 11grprinv 17292 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋(+g𝐺)(𝐼𝑋)) = 0 )
225, 10, 21syl2anc 691 . 2 ((𝐺 ∈ oGrp ∧ 𝑋𝐵0 𝑋) → (𝑋(+g𝐺)(𝐼𝑋)) = 0 )
2318, 20, 223brtr3d 4614 1 ((𝐺 ∈ oGrp ∧ 𝑋𝐵0 𝑋) → (𝐼𝑋) 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1031   = wceq 1475  wcel 1977   class class class wbr 4583  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  lecple 15775  0gc0g 15923  Grpcgrp 17245  invgcminusg 17246  oMndcomnd 29028  oGrpcogrp 29029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-omnd 29030  df-ogrp 29031
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator