MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofs2 Structured version   Visualization version   GIF version

Theorem ofs2 13558
Description: Letterwise operations on a double letter word. (Contributed by Thierry Arnoux, 7-Oct-2018.)
Assertion
Ref Expression
ofs2 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → (⟨“𝐴𝐵”⟩ ∘𝑓 𝑅⟨“𝐶𝐷”⟩) = ⟨“(𝐴𝑅𝐶)(𝐵𝑅𝐷)”⟩)

Proof of Theorem ofs2
StepHypRef Expression
1 df-s2 13444 . . . 4 ⟨“𝐴𝐵”⟩ = (⟨“𝐴”⟩ ++ ⟨“𝐵”⟩)
2 df-s2 13444 . . . 4 ⟨“𝐶𝐷”⟩ = (⟨“𝐶”⟩ ++ ⟨“𝐷”⟩)
31, 2oveq12i 6561 . . 3 (⟨“𝐴𝐵”⟩ ∘𝑓 𝑅⟨“𝐶𝐷”⟩) = ((⟨“𝐴”⟩ ++ ⟨“𝐵”⟩) ∘𝑓 𝑅(⟨“𝐶”⟩ ++ ⟨“𝐷”⟩))
4 simpll 786 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → 𝐴𝑆)
54s1cld 13236 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → ⟨“𝐴”⟩ ∈ Word 𝑆)
6 simplr 788 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → 𝐵𝑆)
76s1cld 13236 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → ⟨“𝐵”⟩ ∈ Word 𝑆)
8 simprl 790 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → 𝐶𝑇)
98s1cld 13236 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → ⟨“𝐶”⟩ ∈ Word 𝑇)
10 simprr 792 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → 𝐷𝑇)
1110s1cld 13236 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → ⟨“𝐷”⟩ ∈ Word 𝑇)
12 s1len 13238 . . . . . 6 (#‘⟨“𝐴”⟩) = 1
13 s1len 13238 . . . . . 6 (#‘⟨“𝐶”⟩) = 1
1412, 13eqtr4i 2635 . . . . 5 (#‘⟨“𝐴”⟩) = (#‘⟨“𝐶”⟩)
1514a1i 11 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → (#‘⟨“𝐴”⟩) = (#‘⟨“𝐶”⟩))
16 s1len 13238 . . . . . 6 (#‘⟨“𝐵”⟩) = 1
17 s1len 13238 . . . . . 6 (#‘⟨“𝐷”⟩) = 1
1816, 17eqtr4i 2635 . . . . 5 (#‘⟨“𝐵”⟩) = (#‘⟨“𝐷”⟩)
1918a1i 11 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → (#‘⟨“𝐵”⟩) = (#‘⟨“𝐷”⟩))
205, 7, 9, 11, 15, 19ofccat 13556 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → ((⟨“𝐴”⟩ ++ ⟨“𝐵”⟩) ∘𝑓 𝑅(⟨“𝐶”⟩ ++ ⟨“𝐷”⟩)) = ((⟨“𝐴”⟩ ∘𝑓 𝑅⟨“𝐶”⟩) ++ (⟨“𝐵”⟩ ∘𝑓 𝑅⟨“𝐷”⟩)))
213, 20syl5eq 2656 . 2 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → (⟨“𝐴𝐵”⟩ ∘𝑓 𝑅⟨“𝐶𝐷”⟩) = ((⟨“𝐴”⟩ ∘𝑓 𝑅⟨“𝐶”⟩) ++ (⟨“𝐵”⟩ ∘𝑓 𝑅⟨“𝐷”⟩)))
22 ofs1 13557 . . . . 5 ((𝐴𝑆𝐶𝑇) → (⟨“𝐴”⟩ ∘𝑓 𝑅⟨“𝐶”⟩) = ⟨“(𝐴𝑅𝐶)”⟩)
234, 8, 22syl2anc 691 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → (⟨“𝐴”⟩ ∘𝑓 𝑅⟨“𝐶”⟩) = ⟨“(𝐴𝑅𝐶)”⟩)
24 ofs1 13557 . . . . 5 ((𝐵𝑆𝐷𝑇) → (⟨“𝐵”⟩ ∘𝑓 𝑅⟨“𝐷”⟩) = ⟨“(𝐵𝑅𝐷)”⟩)
256, 10, 24syl2anc 691 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → (⟨“𝐵”⟩ ∘𝑓 𝑅⟨“𝐷”⟩) = ⟨“(𝐵𝑅𝐷)”⟩)
2623, 25oveq12d 6567 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → ((⟨“𝐴”⟩ ∘𝑓 𝑅⟨“𝐶”⟩) ++ (⟨“𝐵”⟩ ∘𝑓 𝑅⟨“𝐷”⟩)) = (⟨“(𝐴𝑅𝐶)”⟩ ++ ⟨“(𝐵𝑅𝐷)”⟩))
27 df-s2 13444 . . 3 ⟨“(𝐴𝑅𝐶)(𝐵𝑅𝐷)”⟩ = (⟨“(𝐴𝑅𝐶)”⟩ ++ ⟨“(𝐵𝑅𝐷)”⟩)
2826, 27syl6eqr 2662 . 2 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → ((⟨“𝐴”⟩ ∘𝑓 𝑅⟨“𝐶”⟩) ++ (⟨“𝐵”⟩ ∘𝑓 𝑅⟨“𝐷”⟩)) = ⟨“(𝐴𝑅𝐶)(𝐵𝑅𝐷)”⟩)
2921, 28eqtrd 2644 1 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑇𝐷𝑇)) → (⟨“𝐴𝐵”⟩ ∘𝑓 𝑅⟨“𝐶𝐷”⟩) = ⟨“(𝐴𝑅𝐶)(𝐵𝑅𝐷)”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  cfv 5804  (class class class)co 6549  𝑓 cof 6793  1c1 9816  #chash 12979   ++ cconcat 13148  ⟨“cs1 13149  ⟨“cs2 13437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444
This theorem is referenced by:  amgmw2d  42359
  Copyright terms: Public domain W3C validator