MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofs1 Structured version   Visualization version   GIF version

Theorem ofs1 13557
Description: Letterwise operations on a single letter word. (Contributed by Thierry Arnoux, 7-Oct-2018.)
Assertion
Ref Expression
ofs1 ((𝐴𝑆𝐵𝑇) → (⟨“𝐴”⟩ ∘𝑓 𝑅⟨“𝐵”⟩) = ⟨“(𝐴𝑅𝐵)”⟩)

Proof of Theorem ofs1
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 snex 4835 . . . 4 {0} ∈ V
21a1i 11 . . 3 ((𝐴𝑆𝐵𝑇) → {0} ∈ V)
3 simpll 786 . . 3 (((𝐴𝑆𝐵𝑇) ∧ 𝑖 ∈ {0}) → 𝐴𝑆)
4 simplr 788 . . 3 (((𝐴𝑆𝐵𝑇) ∧ 𝑖 ∈ {0}) → 𝐵𝑇)
5 s1val 13231 . . . . 5 (𝐴𝑆 → ⟨“𝐴”⟩ = {⟨0, 𝐴⟩})
6 0nn0 11184 . . . . . 6 0 ∈ ℕ0
7 fmptsn 6338 . . . . . 6 ((0 ∈ ℕ0𝐴𝑆) → {⟨0, 𝐴⟩} = (𝑖 ∈ {0} ↦ 𝐴))
86, 7mpan 702 . . . . 5 (𝐴𝑆 → {⟨0, 𝐴⟩} = (𝑖 ∈ {0} ↦ 𝐴))
95, 8eqtrd 2644 . . . 4 (𝐴𝑆 → ⟨“𝐴”⟩ = (𝑖 ∈ {0} ↦ 𝐴))
109adantr 480 . . 3 ((𝐴𝑆𝐵𝑇) → ⟨“𝐴”⟩ = (𝑖 ∈ {0} ↦ 𝐴))
11 s1val 13231 . . . . 5 (𝐵𝑇 → ⟨“𝐵”⟩ = {⟨0, 𝐵⟩})
12 fmptsn 6338 . . . . . 6 ((0 ∈ ℕ0𝐵𝑇) → {⟨0, 𝐵⟩} = (𝑖 ∈ {0} ↦ 𝐵))
136, 12mpan 702 . . . . 5 (𝐵𝑇 → {⟨0, 𝐵⟩} = (𝑖 ∈ {0} ↦ 𝐵))
1411, 13eqtrd 2644 . . . 4 (𝐵𝑇 → ⟨“𝐵”⟩ = (𝑖 ∈ {0} ↦ 𝐵))
1514adantl 481 . . 3 ((𝐴𝑆𝐵𝑇) → ⟨“𝐵”⟩ = (𝑖 ∈ {0} ↦ 𝐵))
162, 3, 4, 10, 15offval2 6812 . 2 ((𝐴𝑆𝐵𝑇) → (⟨“𝐴”⟩ ∘𝑓 𝑅⟨“𝐵”⟩) = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵)))
17 ovex 6577 . . . 4 (𝐴𝑅𝐵) ∈ V
18 s1val 13231 . . . 4 ((𝐴𝑅𝐵) ∈ V → ⟨“(𝐴𝑅𝐵)”⟩ = {⟨0, (𝐴𝑅𝐵)⟩})
1917, 18ax-mp 5 . . 3 ⟨“(𝐴𝑅𝐵)”⟩ = {⟨0, (𝐴𝑅𝐵)⟩}
20 fmptsn 6338 . . . 4 ((0 ∈ ℕ0 ∧ (𝐴𝑅𝐵) ∈ V) → {⟨0, (𝐴𝑅𝐵)⟩} = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵)))
216, 17, 20mp2an 704 . . 3 {⟨0, (𝐴𝑅𝐵)⟩} = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵))
2219, 21eqtri 2632 . 2 ⟨“(𝐴𝑅𝐵)”⟩ = (𝑖 ∈ {0} ↦ (𝐴𝑅𝐵))
2316, 22syl6eqr 2662 1 ((𝐴𝑆𝐵𝑇) → (⟨“𝐴”⟩ ∘𝑓 𝑅⟨“𝐵”⟩) = ⟨“(𝐴𝑅𝐵)”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  {csn 4125  cop 4131  cmpt 4643  (class class class)co 6549  𝑓 cof 6793  0cc0 9815  0cn0 11169  ⟨“cs1 13149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-mulcl 9877  ax-i2m1 9883
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-n0 11170  df-s1 13157
This theorem is referenced by:  ofs2  13558
  Copyright terms: Public domain W3C validator