Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofrn2 Structured version   Visualization version   GIF version

Theorem ofrn2 28822
Description: The range of the function operation. (Contributed by Thierry Arnoux, 21-Mar-2017.)
Hypotheses
Ref Expression
ofrn.1 (𝜑𝐹:𝐴𝐵)
ofrn.2 (𝜑𝐺:𝐴𝐵)
ofrn.3 (𝜑+ :(𝐵 × 𝐵)⟶𝐶)
ofrn.4 (𝜑𝐴𝑉)
Assertion
Ref Expression
ofrn2 (𝜑 → ran (𝐹𝑓 + 𝐺) ⊆ ( + “ (ran 𝐹 × ran 𝐺)))

Proof of Theorem ofrn2
Dummy variables 𝑥 𝑦 𝑧 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ofrn.1 . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
2 ffn 5958 . . . . . . . 8 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
31, 2syl 17 . . . . . . 7 (𝜑𝐹 Fn 𝐴)
43adantr 480 . . . . . 6 ((𝜑 ∧ (𝑎𝐴𝑧 = ((𝐹𝑎) + (𝐺𝑎)))) → 𝐹 Fn 𝐴)
5 simprl 790 . . . . . 6 ((𝜑 ∧ (𝑎𝐴𝑧 = ((𝐹𝑎) + (𝐺𝑎)))) → 𝑎𝐴)
6 fnfvelrn 6264 . . . . . 6 ((𝐹 Fn 𝐴𝑎𝐴) → (𝐹𝑎) ∈ ran 𝐹)
74, 5, 6syl2anc 691 . . . . 5 ((𝜑 ∧ (𝑎𝐴𝑧 = ((𝐹𝑎) + (𝐺𝑎)))) → (𝐹𝑎) ∈ ran 𝐹)
8 ofrn.2 . . . . . . . 8 (𝜑𝐺:𝐴𝐵)
9 ffn 5958 . . . . . . . 8 (𝐺:𝐴𝐵𝐺 Fn 𝐴)
108, 9syl 17 . . . . . . 7 (𝜑𝐺 Fn 𝐴)
1110adantr 480 . . . . . 6 ((𝜑 ∧ (𝑎𝐴𝑧 = ((𝐹𝑎) + (𝐺𝑎)))) → 𝐺 Fn 𝐴)
12 fnfvelrn 6264 . . . . . 6 ((𝐺 Fn 𝐴𝑎𝐴) → (𝐺𝑎) ∈ ran 𝐺)
1311, 5, 12syl2anc 691 . . . . 5 ((𝜑 ∧ (𝑎𝐴𝑧 = ((𝐹𝑎) + (𝐺𝑎)))) → (𝐺𝑎) ∈ ran 𝐺)
14 simprr 792 . . . . 5 ((𝜑 ∧ (𝑎𝐴𝑧 = ((𝐹𝑎) + (𝐺𝑎)))) → 𝑧 = ((𝐹𝑎) + (𝐺𝑎)))
15 rspceov 6590 . . . . 5 (((𝐹𝑎) ∈ ran 𝐹 ∧ (𝐺𝑎) ∈ ran 𝐺𝑧 = ((𝐹𝑎) + (𝐺𝑎))) → ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺 𝑧 = (𝑥 + 𝑦))
167, 13, 14, 15syl3anc 1318 . . . 4 ((𝜑 ∧ (𝑎𝐴𝑧 = ((𝐹𝑎) + (𝐺𝑎)))) → ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺 𝑧 = (𝑥 + 𝑦))
1716rexlimdvaa 3014 . . 3 (𝜑 → (∃𝑎𝐴 𝑧 = ((𝐹𝑎) + (𝐺𝑎)) → ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺 𝑧 = (𝑥 + 𝑦)))
1817ss2abdv 3638 . 2 (𝜑 → {𝑧 ∣ ∃𝑎𝐴 𝑧 = ((𝐹𝑎) + (𝐺𝑎))} ⊆ {𝑧 ∣ ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺 𝑧 = (𝑥 + 𝑦)})
19 ofrn.4 . . . . 5 (𝜑𝐴𝑉)
20 inidm 3784 . . . . 5 (𝐴𝐴) = 𝐴
21 eqidd 2611 . . . . 5 ((𝜑𝑎𝐴) → (𝐹𝑎) = (𝐹𝑎))
22 eqidd 2611 . . . . 5 ((𝜑𝑎𝐴) → (𝐺𝑎) = (𝐺𝑎))
233, 10, 19, 19, 20, 21, 22offval 6802 . . . 4 (𝜑 → (𝐹𝑓 + 𝐺) = (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎))))
2423rneqd 5274 . . 3 (𝜑 → ran (𝐹𝑓 + 𝐺) = ran (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎))))
25 eqid 2610 . . . 4 (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎))) = (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎)))
2625rnmpt 5292 . . 3 ran (𝑎𝐴 ↦ ((𝐹𝑎) + (𝐺𝑎))) = {𝑧 ∣ ∃𝑎𝐴 𝑧 = ((𝐹𝑎) + (𝐺𝑎))}
2724, 26syl6eq 2660 . 2 (𝜑 → ran (𝐹𝑓 + 𝐺) = {𝑧 ∣ ∃𝑎𝐴 𝑧 = ((𝐹𝑎) + (𝐺𝑎))})
28 ofrn.3 . . . . 5 (𝜑+ :(𝐵 × 𝐵)⟶𝐶)
29 ffn 5958 . . . . 5 ( + :(𝐵 × 𝐵)⟶𝐶+ Fn (𝐵 × 𝐵))
3028, 29syl 17 . . . 4 (𝜑+ Fn (𝐵 × 𝐵))
31 frn 5966 . . . . . 6 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
321, 31syl 17 . . . . 5 (𝜑 → ran 𝐹𝐵)
33 frn 5966 . . . . . 6 (𝐺:𝐴𝐵 → ran 𝐺𝐵)
348, 33syl 17 . . . . 5 (𝜑 → ran 𝐺𝐵)
35 xpss12 5148 . . . . 5 ((ran 𝐹𝐵 ∧ ran 𝐺𝐵) → (ran 𝐹 × ran 𝐺) ⊆ (𝐵 × 𝐵))
3632, 34, 35syl2anc 691 . . . 4 (𝜑 → (ran 𝐹 × ran 𝐺) ⊆ (𝐵 × 𝐵))
37 ovelimab 6710 . . . 4 (( + Fn (𝐵 × 𝐵) ∧ (ran 𝐹 × ran 𝐺) ⊆ (𝐵 × 𝐵)) → (𝑧 ∈ ( + “ (ran 𝐹 × ran 𝐺)) ↔ ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺 𝑧 = (𝑥 + 𝑦)))
3830, 36, 37syl2anc 691 . . 3 (𝜑 → (𝑧 ∈ ( + “ (ran 𝐹 × ran 𝐺)) ↔ ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺 𝑧 = (𝑥 + 𝑦)))
3938abbi2dv 2729 . 2 (𝜑 → ( + “ (ran 𝐹 × ran 𝐺)) = {𝑧 ∣ ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐺 𝑧 = (𝑥 + 𝑦)})
4018, 27, 393sstr4d 3611 1 (𝜑 → ran (𝐹𝑓 + 𝐺) ⊆ ( + “ (ran 𝐹 × ran 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  {cab 2596  wrex 2897  wss 3540  cmpt 4643   × cxp 5036  ran crn 5039  cima 5041   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  𝑓 cof 6793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795
This theorem is referenced by:  sibfof  29729
  Copyright terms: Public domain W3C validator