Step | Hyp | Ref
| Expression |
1 | | oveq2 6557 |
. . . . 5
⊢ (𝑥 = ∅ → (𝐴 ↑𝑜
𝑥) = (𝐴 ↑𝑜
∅)) |
2 | | oveq2 6557 |
. . . . 5
⊢ (𝑥 = ∅ → (𝐵 ↑𝑜
𝑥) = (𝐵 ↑𝑜
∅)) |
3 | 1, 2 | sseq12d 3597 |
. . . 4
⊢ (𝑥 = ∅ → ((𝐴 ↑𝑜
𝑥) ⊆ (𝐵 ↑𝑜
𝑥) ↔ (𝐴 ↑𝑜
∅) ⊆ (𝐵
↑𝑜 ∅))) |
4 | | oveq2 6557 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝐴 ↑𝑜 𝑥) = (𝐴 ↑𝑜 𝑦)) |
5 | | oveq2 6557 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝐵 ↑𝑜 𝑥) = (𝐵 ↑𝑜 𝑦)) |
6 | 4, 5 | sseq12d 3597 |
. . . 4
⊢ (𝑥 = 𝑦 → ((𝐴 ↑𝑜 𝑥) ⊆ (𝐵 ↑𝑜 𝑥) ↔ (𝐴 ↑𝑜 𝑦) ⊆ (𝐵 ↑𝑜 𝑦))) |
7 | | oveq2 6557 |
. . . . 5
⊢ (𝑥 = suc 𝑦 → (𝐴 ↑𝑜 𝑥) = (𝐴 ↑𝑜 suc 𝑦)) |
8 | | oveq2 6557 |
. . . . 5
⊢ (𝑥 = suc 𝑦 → (𝐵 ↑𝑜 𝑥) = (𝐵 ↑𝑜 suc 𝑦)) |
9 | 7, 8 | sseq12d 3597 |
. . . 4
⊢ (𝑥 = suc 𝑦 → ((𝐴 ↑𝑜 𝑥) ⊆ (𝐵 ↑𝑜 𝑥) ↔ (𝐴 ↑𝑜 suc 𝑦) ⊆ (𝐵 ↑𝑜 suc 𝑦))) |
10 | | oveq2 6557 |
. . . . 5
⊢ (𝑥 = 𝐶 → (𝐴 ↑𝑜 𝑥) = (𝐴 ↑𝑜 𝐶)) |
11 | | oveq2 6557 |
. . . . 5
⊢ (𝑥 = 𝐶 → (𝐵 ↑𝑜 𝑥) = (𝐵 ↑𝑜 𝐶)) |
12 | 10, 11 | sseq12d 3597 |
. . . 4
⊢ (𝑥 = 𝐶 → ((𝐴 ↑𝑜 𝑥) ⊆ (𝐵 ↑𝑜 𝑥) ↔ (𝐴 ↑𝑜 𝐶) ⊆ (𝐵 ↑𝑜 𝐶))) |
13 | | onelon 5665 |
. . . . . . 7
⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ On) |
14 | | oe0 7489 |
. . . . . . 7
⊢ (𝐴 ∈ On → (𝐴 ↑𝑜
∅) = 1𝑜) |
15 | 13, 14 | syl 17 |
. . . . . 6
⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → (𝐴 ↑𝑜 ∅) =
1𝑜) |
16 | | oe0 7489 |
. . . . . . 7
⊢ (𝐵 ∈ On → (𝐵 ↑𝑜
∅) = 1𝑜) |
17 | 16 | adantr 480 |
. . . . . 6
⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → (𝐵 ↑𝑜 ∅) =
1𝑜) |
18 | 15, 17 | eqtr4d 2647 |
. . . . 5
⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → (𝐴 ↑𝑜 ∅) =
(𝐵
↑𝑜 ∅)) |
19 | | eqimss 3620 |
. . . . 5
⊢ ((𝐴 ↑𝑜
∅) = (𝐵
↑𝑜 ∅) → (𝐴 ↑𝑜 ∅) ⊆
(𝐵
↑𝑜 ∅)) |
20 | 18, 19 | syl 17 |
. . . 4
⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → (𝐴 ↑𝑜 ∅) ⊆
(𝐵
↑𝑜 ∅)) |
21 | | simpl 472 |
. . . . . 6
⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → 𝐵 ∈ On) |
22 | | onelss 5683 |
. . . . . . 7
⊢ (𝐵 ∈ On → (𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵)) |
23 | 22 | imp 444 |
. . . . . 6
⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → 𝐴 ⊆ 𝐵) |
24 | 13, 21, 23 | jca31 555 |
. . . . 5
⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ⊆ 𝐵)) |
25 | | oecl 7504 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ↑𝑜
𝑦) ∈
On) |
26 | 25 | 3adant2 1073 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ↑𝑜
𝑦) ∈
On) |
27 | | oecl 7504 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ↑𝑜
𝑦) ∈
On) |
28 | 27 | 3adant1 1072 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ↑𝑜
𝑦) ∈
On) |
29 | | simp1 1054 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → 𝐴 ∈ On) |
30 | | omwordri 7539 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ↑𝑜
𝑦) ∈ On ∧ (𝐵 ↑𝑜
𝑦) ∈ On ∧ 𝐴 ∈ On) → ((𝐴 ↑𝑜
𝑦) ⊆ (𝐵 ↑𝑜
𝑦) → ((𝐴 ↑𝑜
𝑦)
·𝑜 𝐴) ⊆ ((𝐵 ↑𝑜 𝑦) ·𝑜
𝐴))) |
31 | 26, 28, 29, 30 | syl3anc 1318 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ↑𝑜
𝑦) ⊆ (𝐵 ↑𝑜
𝑦) → ((𝐴 ↑𝑜
𝑦)
·𝑜 𝐴) ⊆ ((𝐵 ↑𝑜 𝑦) ·𝑜
𝐴))) |
32 | 31 | imp 444 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴 ↑𝑜
𝑦) ⊆ (𝐵 ↑𝑜
𝑦)) → ((𝐴 ↑𝑜
𝑦)
·𝑜 𝐴) ⊆ ((𝐵 ↑𝑜 𝑦) ·𝑜
𝐴)) |
33 | 32 | adantrl 748 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴 ⊆ 𝐵 ∧ (𝐴 ↑𝑜 𝑦) ⊆ (𝐵 ↑𝑜 𝑦))) → ((𝐴 ↑𝑜 𝑦) ·𝑜
𝐴) ⊆ ((𝐵 ↑𝑜
𝑦)
·𝑜 𝐴)) |
34 | | omwordi 7538 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ (𝐵 ↑𝑜
𝑦) ∈ On) → (𝐴 ⊆ 𝐵 → ((𝐵 ↑𝑜 𝑦) ·𝑜
𝐴) ⊆ ((𝐵 ↑𝑜
𝑦)
·𝑜 𝐵))) |
35 | 28, 34 | syld3an3 1363 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ⊆ 𝐵 → ((𝐵 ↑𝑜 𝑦) ·𝑜
𝐴) ⊆ ((𝐵 ↑𝑜
𝑦)
·𝑜 𝐵))) |
36 | 35 | imp 444 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ 𝐴 ⊆ 𝐵) → ((𝐵 ↑𝑜 𝑦) ·𝑜
𝐴) ⊆ ((𝐵 ↑𝑜
𝑦)
·𝑜 𝐵)) |
37 | 36 | adantrr 749 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴 ⊆ 𝐵 ∧ (𝐴 ↑𝑜 𝑦) ⊆ (𝐵 ↑𝑜 𝑦))) → ((𝐵 ↑𝑜 𝑦) ·𝑜
𝐴) ⊆ ((𝐵 ↑𝑜
𝑦)
·𝑜 𝐵)) |
38 | 33, 37 | sstrd 3578 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴 ⊆ 𝐵 ∧ (𝐴 ↑𝑜 𝑦) ⊆ (𝐵 ↑𝑜 𝑦))) → ((𝐴 ↑𝑜 𝑦) ·𝑜
𝐴) ⊆ ((𝐵 ↑𝑜
𝑦)
·𝑜 𝐵)) |
39 | | oesuc 7494 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ↑𝑜 suc
𝑦) = ((𝐴 ↑𝑜 𝑦) ·𝑜
𝐴)) |
40 | 39 | 3adant2 1073 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ↑𝑜 suc
𝑦) = ((𝐴 ↑𝑜 𝑦) ·𝑜
𝐴)) |
41 | 40 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴 ⊆ 𝐵 ∧ (𝐴 ↑𝑜 𝑦) ⊆ (𝐵 ↑𝑜 𝑦))) → (𝐴 ↑𝑜 suc 𝑦) = ((𝐴 ↑𝑜 𝑦) ·𝑜
𝐴)) |
42 | | oesuc 7494 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ↑𝑜 suc
𝑦) = ((𝐵 ↑𝑜 𝑦) ·𝑜
𝐵)) |
43 | 42 | 3adant1 1072 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ↑𝑜 suc
𝑦) = ((𝐵 ↑𝑜 𝑦) ·𝑜
𝐵)) |
44 | 43 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴 ⊆ 𝐵 ∧ (𝐴 ↑𝑜 𝑦) ⊆ (𝐵 ↑𝑜 𝑦))) → (𝐵 ↑𝑜 suc 𝑦) = ((𝐵 ↑𝑜 𝑦) ·𝑜
𝐵)) |
45 | 38, 41, 44 | 3sstr4d 3611 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐴 ⊆ 𝐵 ∧ (𝐴 ↑𝑜 𝑦) ⊆ (𝐵 ↑𝑜 𝑦))) → (𝐴 ↑𝑜 suc 𝑦) ⊆ (𝐵 ↑𝑜 suc 𝑦)) |
46 | 45 | exp520 1280 |
. . . . . . 7
⊢ (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (𝐴 ⊆ 𝐵 → ((𝐴 ↑𝑜 𝑦) ⊆ (𝐵 ↑𝑜 𝑦) → (𝐴 ↑𝑜 suc 𝑦) ⊆ (𝐵 ↑𝑜 suc 𝑦)))))) |
47 | 46 | com3r 85 |
. . . . . 6
⊢ (𝑦 ∈ On → (𝐴 ∈ On → (𝐵 ∈ On → (𝐴 ⊆ 𝐵 → ((𝐴 ↑𝑜 𝑦) ⊆ (𝐵 ↑𝑜 𝑦) → (𝐴 ↑𝑜 suc 𝑦) ⊆ (𝐵 ↑𝑜 suc 𝑦)))))) |
48 | 47 | imp4c 615 |
. . . . 5
⊢ (𝑦 ∈ On → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ⊆ 𝐵) → ((𝐴 ↑𝑜 𝑦) ⊆ (𝐵 ↑𝑜 𝑦) → (𝐴 ↑𝑜 suc 𝑦) ⊆ (𝐵 ↑𝑜 suc 𝑦)))) |
49 | 24, 48 | syl5 33 |
. . . 4
⊢ (𝑦 ∈ On → ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → ((𝐴 ↑𝑜 𝑦) ⊆ (𝐵 ↑𝑜 𝑦) → (𝐴 ↑𝑜 suc 𝑦) ⊆ (𝐵 ↑𝑜 suc 𝑦)))) |
50 | 13 | ancri 573 |
. . . . 5
⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → (𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴 ∈ 𝐵))) |
51 | | vex 3176 |
. . . . . . . . . . . . 13
⊢ 𝑥 ∈ V |
52 | | limelon 5705 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On) |
53 | 51, 52 | mpan 702 |
. . . . . . . . . . . 12
⊢ (Lim
𝑥 → 𝑥 ∈ On) |
54 | | 0ellim 5704 |
. . . . . . . . . . . 12
⊢ (Lim
𝑥 → ∅ ∈
𝑥) |
55 | | oe0m1 7488 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ On → (∅
∈ 𝑥 ↔ (∅
↑𝑜 𝑥) = ∅)) |
56 | 55 | biimpa 500 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ On ∧ ∅ ∈
𝑥) → (∅
↑𝑜 𝑥) = ∅) |
57 | 53, 54, 56 | syl2anc 691 |
. . . . . . . . . . 11
⊢ (Lim
𝑥 → (∅
↑𝑜 𝑥) = ∅) |
58 | | 0ss 3924 |
. . . . . . . . . . 11
⊢ ∅
⊆ (𝐵
↑𝑜 𝑥) |
59 | 57, 58 | syl6eqss 3618 |
. . . . . . . . . 10
⊢ (Lim
𝑥 → (∅
↑𝑜 𝑥) ⊆ (𝐵 ↑𝑜 𝑥)) |
60 | | oveq1 6556 |
. . . . . . . . . . 11
⊢ (𝐴 = ∅ → (𝐴 ↑𝑜
𝑥) = (∅
↑𝑜 𝑥)) |
61 | 60 | sseq1d 3595 |
. . . . . . . . . 10
⊢ (𝐴 = ∅ → ((𝐴 ↑𝑜
𝑥) ⊆ (𝐵 ↑𝑜
𝑥) ↔ (∅
↑𝑜 𝑥) ⊆ (𝐵 ↑𝑜 𝑥))) |
62 | 59, 61 | syl5ibr 235 |
. . . . . . . . 9
⊢ (𝐴 = ∅ → (Lim 𝑥 → (𝐴 ↑𝑜 𝑥) ⊆ (𝐵 ↑𝑜 𝑥))) |
63 | 62 | adantl 481 |
. . . . . . . 8
⊢ (((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) ∧ 𝐴 = ∅) → (Lim 𝑥 → (𝐴 ↑𝑜 𝑥) ⊆ (𝐵 ↑𝑜 𝑥))) |
64 | 63 | a1dd 48 |
. . . . . . 7
⊢ (((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) ∧ 𝐴 = ∅) → (Lim 𝑥 → (∀𝑦 ∈ 𝑥 (𝐴 ↑𝑜 𝑦) ⊆ (𝐵 ↑𝑜 𝑦) → (𝐴 ↑𝑜 𝑥) ⊆ (𝐵 ↑𝑜 𝑥)))) |
65 | | ss2iun 4472 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
𝑥 (𝐴 ↑𝑜 𝑦) ⊆ (𝐵 ↑𝑜 𝑦) → ∪ 𝑦 ∈ 𝑥 (𝐴 ↑𝑜 𝑦) ⊆ ∪ 𝑦 ∈ 𝑥 (𝐵 ↑𝑜 𝑦)) |
66 | | oelim 7501 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐴) → (𝐴 ↑𝑜 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐴 ↑𝑜 𝑦)) |
67 | 51, 66 | mpanlr1 718 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐴) → (𝐴 ↑𝑜 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐴 ↑𝑜 𝑦)) |
68 | 67 | an32s 842 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ On ∧ ∅ ∈
𝐴) ∧ Lim 𝑥) → (𝐴 ↑𝑜 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐴 ↑𝑜 𝑦)) |
69 | 68 | adantllr 751 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴 ∈ 𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝑥) → (𝐴 ↑𝑜 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐴 ↑𝑜 𝑦)) |
70 | 21 | anim1i 590 |
. . . . . . . . . . . . 13
⊢ (((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) ∧ Lim 𝑥) → (𝐵 ∈ On ∧ Lim 𝑥)) |
71 | | ne0i 3880 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ 𝐵 → 𝐵 ≠ ∅) |
72 | | on0eln0 5697 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵 ∈ On → (∅
∈ 𝐵 ↔ 𝐵 ≠ ∅)) |
73 | 71, 72 | syl5ibr 235 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 ∈ On → (𝐴 ∈ 𝐵 → ∅ ∈ 𝐵)) |
74 | 73 | imp 444 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → ∅ ∈ 𝐵) |
75 | 74 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) ∧ Lim 𝑥) → ∅ ∈ 𝐵) |
76 | | oelim 7501 |
. . . . . . . . . . . . . 14
⊢ (((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐵) → (𝐵 ↑𝑜 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐵 ↑𝑜 𝑦)) |
77 | 51, 76 | mpanlr1 718 |
. . . . . . . . . . . . 13
⊢ (((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵) → (𝐵 ↑𝑜 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐵 ↑𝑜 𝑦)) |
78 | 70, 75, 77 | syl2anc 691 |
. . . . . . . . . . . 12
⊢ (((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) ∧ Lim 𝑥) → (𝐵 ↑𝑜 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐵 ↑𝑜 𝑦)) |
79 | 78 | adantlr 747 |
. . . . . . . . . . 11
⊢ ((((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) ∧ ∅ ∈ 𝐴) ∧ Lim 𝑥) → (𝐵 ↑𝑜 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐵 ↑𝑜 𝑦)) |
80 | 79 | adantlll 750 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴 ∈ 𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝑥) → (𝐵 ↑𝑜 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐵 ↑𝑜 𝑦)) |
81 | 69, 80 | sseq12d 3597 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴 ∈ 𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝑥) → ((𝐴 ↑𝑜 𝑥) ⊆ (𝐵 ↑𝑜 𝑥) ↔ ∪ 𝑦 ∈ 𝑥 (𝐴 ↑𝑜 𝑦) ⊆ ∪ 𝑦 ∈ 𝑥 (𝐵 ↑𝑜 𝑦))) |
82 | 65, 81 | syl5ibr 235 |
. . . . . . . 8
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴 ∈ 𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝑥) → (∀𝑦 ∈ 𝑥 (𝐴 ↑𝑜 𝑦) ⊆ (𝐵 ↑𝑜 𝑦) → (𝐴 ↑𝑜 𝑥) ⊆ (𝐵 ↑𝑜 𝑥))) |
83 | 82 | ex 449 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴 ∈ 𝐵)) ∧ ∅ ∈ 𝐴) → (Lim 𝑥 → (∀𝑦 ∈ 𝑥 (𝐴 ↑𝑜 𝑦) ⊆ (𝐵 ↑𝑜 𝑦) → (𝐴 ↑𝑜 𝑥) ⊆ (𝐵 ↑𝑜 𝑥)))) |
84 | 64, 83 | oe0lem 7480 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴 ∈ 𝐵)) → (Lim 𝑥 → (∀𝑦 ∈ 𝑥 (𝐴 ↑𝑜 𝑦) ⊆ (𝐵 ↑𝑜 𝑦) → (𝐴 ↑𝑜 𝑥) ⊆ (𝐵 ↑𝑜 𝑥)))) |
85 | 84 | com12 32 |
. . . . 5
⊢ (Lim
𝑥 → ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴 ∈ 𝐵)) → (∀𝑦 ∈ 𝑥 (𝐴 ↑𝑜 𝑦) ⊆ (𝐵 ↑𝑜 𝑦) → (𝐴 ↑𝑜 𝑥) ⊆ (𝐵 ↑𝑜 𝑥)))) |
86 | 50, 85 | syl5 33 |
. . . 4
⊢ (Lim
𝑥 → ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → (∀𝑦 ∈ 𝑥 (𝐴 ↑𝑜 𝑦) ⊆ (𝐵 ↑𝑜 𝑦) → (𝐴 ↑𝑜 𝑥) ⊆ (𝐵 ↑𝑜 𝑥)))) |
87 | 3, 6, 9, 12, 20, 49, 86 | tfinds3 6956 |
. . 3
⊢ (𝐶 ∈ On → ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → (𝐴 ↑𝑜 𝐶) ⊆ (𝐵 ↑𝑜 𝐶))) |
88 | 87 | expd 451 |
. 2
⊢ (𝐶 ∈ On → (𝐵 ∈ On → (𝐴 ∈ 𝐵 → (𝐴 ↑𝑜 𝐶) ⊆ (𝐵 ↑𝑜 𝐶)))) |
89 | 88 | impcom 445 |
1
⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 → (𝐴 ↑𝑜 𝐶) ⊆ (𝐵 ↑𝑜 𝐶))) |