MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oev2 Structured version   Visualization version   GIF version

Theorem oev2 7490
Description: Alternate value of ordinal exponentiation. Compare oev 7481. (Contributed by NM, 2-Jan-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oev2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝑜 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∩ ((V ∖ 𝐴) ∪ 𝐵)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem oev2
StepHypRef Expression
1 oveq12 6558 . . . . . 6 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴𝑜 𝐵) = (∅ ↑𝑜 ∅))
2 oe0m0 7487 . . . . . 6 (∅ ↑𝑜 ∅) = 1𝑜
31, 2syl6eq 2660 . . . . 5 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴𝑜 𝐵) = 1𝑜)
4 fveq2 6103 . . . . . . . 8 (𝐵 = ∅ → (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘∅))
5 1on 7454 . . . . . . . . . 10 1𝑜 ∈ On
65elexi 3186 . . . . . . . . 9 1𝑜 ∈ V
76rdg0 7404 . . . . . . . 8 (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘∅) = 1𝑜
84, 7syl6eq 2660 . . . . . . 7 (𝐵 = ∅ → (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) = 1𝑜)
9 inteq 4413 . . . . . . . 8 (𝐵 = ∅ → 𝐵 = ∅)
10 int0 4425 . . . . . . . 8 ∅ = V
119, 10syl6eq 2660 . . . . . . 7 (𝐵 = ∅ → 𝐵 = V)
128, 11ineq12d 3777 . . . . . 6 (𝐵 = ∅ → ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∩ 𝐵) = (1𝑜 ∩ V))
13 inv1 3922 . . . . . . 7 (1𝑜 ∩ V) = 1𝑜
1413a1i 11 . . . . . 6 (𝐴 = ∅ → (1𝑜 ∩ V) = 1𝑜)
1512, 14sylan9eqr 2666 . . . . 5 ((𝐴 = ∅ ∧ 𝐵 = ∅) → ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∩ 𝐵) = 1𝑜)
163, 15eqtr4d 2647 . . . 4 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴𝑜 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∩ 𝐵))
17 oveq1 6556 . . . . . . 7 (𝐴 = ∅ → (𝐴𝑜 𝐵) = (∅ ↑𝑜 𝐵))
18 oe0m1 7488 . . . . . . . 8 (𝐵 ∈ On → (∅ ∈ 𝐵 ↔ (∅ ↑𝑜 𝐵) = ∅))
1918biimpa 500 . . . . . . 7 ((𝐵 ∈ On ∧ ∅ ∈ 𝐵) → (∅ ↑𝑜 𝐵) = ∅)
2017, 19sylan9eqr 2666 . . . . . 6 (((𝐵 ∈ On ∧ ∅ ∈ 𝐵) ∧ 𝐴 = ∅) → (𝐴𝑜 𝐵) = ∅)
2120an32s 842 . . . . 5 (((𝐵 ∈ On ∧ 𝐴 = ∅) ∧ ∅ ∈ 𝐵) → (𝐴𝑜 𝐵) = ∅)
22 int0el 4443 . . . . . . . 8 (∅ ∈ 𝐵 𝐵 = ∅)
2322ineq2d 3776 . . . . . . 7 (∅ ∈ 𝐵 → ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∩ 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∩ ∅))
24 in0 3920 . . . . . . 7 ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∩ ∅) = ∅
2523, 24syl6eq 2660 . . . . . 6 (∅ ∈ 𝐵 → ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∩ 𝐵) = ∅)
2625adantl 481 . . . . 5 (((𝐵 ∈ On ∧ 𝐴 = ∅) ∧ ∅ ∈ 𝐵) → ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∩ 𝐵) = ∅)
2721, 26eqtr4d 2647 . . . 4 (((𝐵 ∈ On ∧ 𝐴 = ∅) ∧ ∅ ∈ 𝐵) → (𝐴𝑜 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∩ 𝐵))
2816, 27oe0lem 7480 . . 3 ((𝐵 ∈ On ∧ 𝐴 = ∅) → (𝐴𝑜 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∩ 𝐵))
29 inteq 4413 . . . . . . . . . 10 (𝐴 = ∅ → 𝐴 = ∅)
3029, 10syl6eq 2660 . . . . . . . . 9 (𝐴 = ∅ → 𝐴 = V)
3130difeq2d 3690 . . . . . . . 8 (𝐴 = ∅ → (V ∖ 𝐴) = (V ∖ V))
32 difid 3902 . . . . . . . 8 (V ∖ V) = ∅
3331, 32syl6eq 2660 . . . . . . 7 (𝐴 = ∅ → (V ∖ 𝐴) = ∅)
3433uneq2d 3729 . . . . . 6 (𝐴 = ∅ → ( 𝐵 ∪ (V ∖ 𝐴)) = ( 𝐵 ∪ ∅))
35 uncom 3719 . . . . . 6 ( 𝐵 ∪ (V ∖ 𝐴)) = ((V ∖ 𝐴) ∪ 𝐵)
36 un0 3919 . . . . . 6 ( 𝐵 ∪ ∅) = 𝐵
3734, 35, 363eqtr3g 2667 . . . . 5 (𝐴 = ∅ → ((V ∖ 𝐴) ∪ 𝐵) = 𝐵)
3837adantl 481 . . . 4 ((𝐵 ∈ On ∧ 𝐴 = ∅) → ((V ∖ 𝐴) ∪ 𝐵) = 𝐵)
3938ineq2d 3776 . . 3 ((𝐵 ∈ On ∧ 𝐴 = ∅) → ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∩ ((V ∖ 𝐴) ∪ 𝐵)) = ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∩ 𝐵))
4028, 39eqtr4d 2647 . 2 ((𝐵 ∈ On ∧ 𝐴 = ∅) → (𝐴𝑜 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∩ ((V ∖ 𝐴) ∪ 𝐵)))
41 oevn0 7482 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴𝑜 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵))
42 int0el 4443 . . . . . . . . . 10 (∅ ∈ 𝐴 𝐴 = ∅)
4342difeq2d 3690 . . . . . . . . 9 (∅ ∈ 𝐴 → (V ∖ 𝐴) = (V ∖ ∅))
44 dif0 3904 . . . . . . . . 9 (V ∖ ∅) = V
4543, 44syl6eq 2660 . . . . . . . 8 (∅ ∈ 𝐴 → (V ∖ 𝐴) = V)
4645uneq2d 3729 . . . . . . 7 (∅ ∈ 𝐴 → ( 𝐵 ∪ (V ∖ 𝐴)) = ( 𝐵 ∪ V))
47 unv 3923 . . . . . . 7 ( 𝐵 ∪ V) = V
4846, 35, 473eqtr3g 2667 . . . . . 6 (∅ ∈ 𝐴 → ((V ∖ 𝐴) ∪ 𝐵) = V)
4948adantl 481 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ((V ∖ 𝐴) ∪ 𝐵) = V)
5049ineq2d 3776 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∩ ((V ∖ 𝐴) ∪ 𝐵)) = ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∩ V))
51 inv1 3922 . . . 4 ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∩ V) = (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵)
5250, 51syl6req 2661 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∩ ((V ∖ 𝐴) ∪ 𝐵)))
5341, 52eqtrd 2644 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴𝑜 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∩ ((V ∖ 𝐴) ∪ 𝐵)))
5440, 53oe0lem 7480 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝑜 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∩ ((V ∖ 𝐴) ∪ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  cdif 3537  cun 3538  cin 3539  c0 3874   cint 4410  cmpt 4643  Oncon0 5640  cfv 5804  (class class class)co 6549  reccrdg 7392  1𝑜c1o 7440   ·𝑜 comu 7445  𝑜 coe 7446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oexp 7453
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator