Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oev | Structured version Visualization version GIF version |
Description: Value of ordinal exponentiation. (Contributed by NM, 30-Dec-2004.) (Revised by Mario Carneiro, 23-Aug-2014.) |
Ref | Expression |
---|---|
oev | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑𝑜 𝐵) = if(𝐴 = ∅, (1𝑜 ∖ 𝐵), (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2614 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑦 = ∅ ↔ 𝐴 = ∅)) | |
2 | oveq2 6557 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 ·𝑜 𝑦) = (𝑥 ·𝑜 𝐴)) | |
3 | 2 | mpteq2dv 4673 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑥 ∈ V ↦ (𝑥 ·𝑜 𝑦)) = (𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴))) |
4 | rdgeq1 7394 | . . . . 5 ⊢ ((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝑦)) = (𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)) → rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝑦)), 1𝑜) = rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝑦 = 𝐴 → rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝑦)), 1𝑜) = rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)) |
6 | 5 | fveq1d 6105 | . . 3 ⊢ (𝑦 = 𝐴 → (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝑦)), 1𝑜)‘𝑧) = (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝑧)) |
7 | 1, 6 | ifbieq2d 4061 | . 2 ⊢ (𝑦 = 𝐴 → if(𝑦 = ∅, (1𝑜 ∖ 𝑧), (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝑦)), 1𝑜)‘𝑧)) = if(𝐴 = ∅, (1𝑜 ∖ 𝑧), (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝑧))) |
8 | difeq2 3684 | . . 3 ⊢ (𝑧 = 𝐵 → (1𝑜 ∖ 𝑧) = (1𝑜 ∖ 𝐵)) | |
9 | fveq2 6103 | . . 3 ⊢ (𝑧 = 𝐵 → (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝑧) = (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵)) | |
10 | 8, 9 | ifeq12d 4056 | . 2 ⊢ (𝑧 = 𝐵 → if(𝐴 = ∅, (1𝑜 ∖ 𝑧), (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝑧)) = if(𝐴 = ∅, (1𝑜 ∖ 𝐵), (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵))) |
11 | df-oexp 7453 | . 2 ⊢ ↑𝑜 = (𝑦 ∈ On, 𝑧 ∈ On ↦ if(𝑦 = ∅, (1𝑜 ∖ 𝑧), (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝑦)), 1𝑜)‘𝑧))) | |
12 | 1on 7454 | . . . . 5 ⊢ 1𝑜 ∈ On | |
13 | 12 | elexi 3186 | . . . 4 ⊢ 1𝑜 ∈ V |
14 | difss 3699 | . . . 4 ⊢ (1𝑜 ∖ 𝐵) ⊆ 1𝑜 | |
15 | 13, 14 | ssexi 4731 | . . 3 ⊢ (1𝑜 ∖ 𝐵) ∈ V |
16 | fvex 6113 | . . 3 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵) ∈ V | |
17 | 15, 16 | ifex 4106 | . 2 ⊢ if(𝐴 = ∅, (1𝑜 ∖ 𝐵), (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵)) ∈ V |
18 | 7, 10, 11, 17 | ovmpt2 6694 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑𝑜 𝐵) = if(𝐴 = ∅, (1𝑜 ∖ 𝐵), (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 Vcvv 3173 ∖ cdif 3537 ∅c0 3874 ifcif 4036 ↦ cmpt 4643 Oncon0 5640 ‘cfv 5804 (class class class)co 6549 reccrdg 7392 1𝑜c1o 7440 ·𝑜 comu 7445 ↑𝑜 coe 7446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-suc 5646 df-iota 5768 df-fun 5806 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oexp 7453 |
This theorem is referenced by: oevn0 7482 oe0m 7485 |
Copyright terms: Public domain | W3C validator |