MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oesuclem Structured version   Visualization version   GIF version

Theorem oesuclem 7492
Description: Lemma for oesuc 7494. (Contributed by NM, 31-Dec-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
Hypotheses
Ref Expression
oesuclem.1 Lim 𝑋
oesuclem.2 (𝐵𝑋 → (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘suc 𝐵) = ((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵)))
Assertion
Ref Expression
oesuclem ((𝐴 ∈ On ∧ 𝐵𝑋) → (𝐴𝑜 suc 𝐵) = ((𝐴𝑜 𝐵) ·𝑜 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑋(𝑥)

Proof of Theorem oesuclem
StepHypRef Expression
1 oveq1 6556 . . . 4 (𝐴 = ∅ → (𝐴𝑜 suc 𝐵) = (∅ ↑𝑜 suc 𝐵))
2 oesuclem.1 . . . . . . . 8 Lim 𝑋
3 limord 5701 . . . . . . . 8 (Lim 𝑋 → Ord 𝑋)
42, 3ax-mp 5 . . . . . . 7 Ord 𝑋
5 ordelord 5662 . . . . . . 7 ((Ord 𝑋𝐵𝑋) → Ord 𝐵)
64, 5mpan 702 . . . . . 6 (𝐵𝑋 → Ord 𝐵)
7 0elsuc 6927 . . . . . 6 (Ord 𝐵 → ∅ ∈ suc 𝐵)
86, 7syl 17 . . . . 5 (𝐵𝑋 → ∅ ∈ suc 𝐵)
9 limsuc 6941 . . . . . . 7 (Lim 𝑋 → (𝐵𝑋 ↔ suc 𝐵𝑋))
102, 9ax-mp 5 . . . . . 6 (𝐵𝑋 ↔ suc 𝐵𝑋)
11 ordelon 5664 . . . . . . . 8 ((Ord 𝑋 ∧ suc 𝐵𝑋) → suc 𝐵 ∈ On)
124, 11mpan 702 . . . . . . 7 (suc 𝐵𝑋 → suc 𝐵 ∈ On)
13 oe0m1 7488 . . . . . . 7 (suc 𝐵 ∈ On → (∅ ∈ suc 𝐵 ↔ (∅ ↑𝑜 suc 𝐵) = ∅))
1412, 13syl 17 . . . . . 6 (suc 𝐵𝑋 → (∅ ∈ suc 𝐵 ↔ (∅ ↑𝑜 suc 𝐵) = ∅))
1510, 14sylbi 206 . . . . 5 (𝐵𝑋 → (∅ ∈ suc 𝐵 ↔ (∅ ↑𝑜 suc 𝐵) = ∅))
168, 15mpbid 221 . . . 4 (𝐵𝑋 → (∅ ↑𝑜 suc 𝐵) = ∅)
171, 16sylan9eqr 2666 . . 3 ((𝐵𝑋𝐴 = ∅) → (𝐴𝑜 suc 𝐵) = ∅)
18 oveq1 6556 . . . . 5 (𝐴 = ∅ → (𝐴𝑜 𝐵) = (∅ ↑𝑜 𝐵))
19 id 22 . . . . 5 (𝐴 = ∅ → 𝐴 = ∅)
2018, 19oveq12d 6567 . . . 4 (𝐴 = ∅ → ((𝐴𝑜 𝐵) ·𝑜 𝐴) = ((∅ ↑𝑜 𝐵) ·𝑜 ∅))
21 ordelon 5664 . . . . . . 7 ((Ord 𝑋𝐵𝑋) → 𝐵 ∈ On)
224, 21mpan 702 . . . . . 6 (𝐵𝑋𝐵 ∈ On)
23 oveq2 6557 . . . . . . . . 9 (𝐵 = ∅ → (∅ ↑𝑜 𝐵) = (∅ ↑𝑜 ∅))
24 oe0m0 7487 . . . . . . . . . 10 (∅ ↑𝑜 ∅) = 1𝑜
25 1on 7454 . . . . . . . . . 10 1𝑜 ∈ On
2624, 25eqeltri 2684 . . . . . . . . 9 (∅ ↑𝑜 ∅) ∈ On
2723, 26syl6eqel 2696 . . . . . . . 8 (𝐵 = ∅ → (∅ ↑𝑜 𝐵) ∈ On)
2827adantl 481 . . . . . . 7 ((𝐵𝑋𝐵 = ∅) → (∅ ↑𝑜 𝐵) ∈ On)
29 oe0m1 7488 . . . . . . . . . . 11 (𝐵 ∈ On → (∅ ∈ 𝐵 ↔ (∅ ↑𝑜 𝐵) = ∅))
3022, 29syl 17 . . . . . . . . . 10 (𝐵𝑋 → (∅ ∈ 𝐵 ↔ (∅ ↑𝑜 𝐵) = ∅))
3130biimpa 500 . . . . . . . . 9 ((𝐵𝑋 ∧ ∅ ∈ 𝐵) → (∅ ↑𝑜 𝐵) = ∅)
32 0elon 5695 . . . . . . . . 9 ∅ ∈ On
3331, 32syl6eqel 2696 . . . . . . . 8 ((𝐵𝑋 ∧ ∅ ∈ 𝐵) → (∅ ↑𝑜 𝐵) ∈ On)
3433adantll 746 . . . . . . 7 (((𝐵 ∈ On ∧ 𝐵𝑋) ∧ ∅ ∈ 𝐵) → (∅ ↑𝑜 𝐵) ∈ On)
3528, 34oe0lem 7480 . . . . . 6 ((𝐵 ∈ On ∧ 𝐵𝑋) → (∅ ↑𝑜 𝐵) ∈ On)
3622, 35mpancom 700 . . . . 5 (𝐵𝑋 → (∅ ↑𝑜 𝐵) ∈ On)
37 om0 7484 . . . . 5 ((∅ ↑𝑜 𝐵) ∈ On → ((∅ ↑𝑜 𝐵) ·𝑜 ∅) = ∅)
3836, 37syl 17 . . . 4 (𝐵𝑋 → ((∅ ↑𝑜 𝐵) ·𝑜 ∅) = ∅)
3920, 38sylan9eqr 2666 . . 3 ((𝐵𝑋𝐴 = ∅) → ((𝐴𝑜 𝐵) ·𝑜 𝐴) = ∅)
4017, 39eqtr4d 2647 . 2 ((𝐵𝑋𝐴 = ∅) → (𝐴𝑜 suc 𝐵) = ((𝐴𝑜 𝐵) ·𝑜 𝐴))
41 oesuclem.2 . . . 4 (𝐵𝑋 → (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘suc 𝐵) = ((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵)))
4241ad2antlr 759 . . 3 (((𝐴 ∈ On ∧ 𝐵𝑋) ∧ ∅ ∈ 𝐴) → (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘suc 𝐵) = ((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵)))
4310, 12sylbi 206 . . . 4 (𝐵𝑋 → suc 𝐵 ∈ On)
44 oevn0 7482 . . . 4 (((𝐴 ∈ On ∧ suc 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴𝑜 suc 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘suc 𝐵))
4543, 44sylanl2 681 . . 3 (((𝐴 ∈ On ∧ 𝐵𝑋) ∧ ∅ ∈ 𝐴) → (𝐴𝑜 suc 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘suc 𝐵))
46 ovex 6577 . . . . 5 (𝐴𝑜 𝐵) ∈ V
47 oveq1 6556 . . . . . 6 (𝑥 = (𝐴𝑜 𝐵) → (𝑥 ·𝑜 𝐴) = ((𝐴𝑜 𝐵) ·𝑜 𝐴))
48 eqid 2610 . . . . . 6 (𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)) = (𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴))
49 ovex 6577 . . . . . 6 ((𝐴𝑜 𝐵) ·𝑜 𝐴) ∈ V
5047, 48, 49fvmpt 6191 . . . . 5 ((𝐴𝑜 𝐵) ∈ V → ((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴))‘(𝐴𝑜 𝐵)) = ((𝐴𝑜 𝐵) ·𝑜 𝐴))
5146, 50ax-mp 5 . . . 4 ((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴))‘(𝐴𝑜 𝐵)) = ((𝐴𝑜 𝐵) ·𝑜 𝐴)
52 oevn0 7482 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴𝑜 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵))
5322, 52sylanl2 681 . . . . 5 (((𝐴 ∈ On ∧ 𝐵𝑋) ∧ ∅ ∈ 𝐴) → (𝐴𝑜 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵))
5453fveq2d 6107 . . . 4 (((𝐴 ∈ On ∧ 𝐵𝑋) ∧ ∅ ∈ 𝐴) → ((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴))‘(𝐴𝑜 𝐵)) = ((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵)))
5551, 54syl5eqr 2658 . . 3 (((𝐴 ∈ On ∧ 𝐵𝑋) ∧ ∅ ∈ 𝐴) → ((𝐴𝑜 𝐵) ·𝑜 𝐴) = ((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 ·𝑜 𝐴)), 1𝑜)‘𝐵)))
5642, 45, 553eqtr4d 2654 . 2 (((𝐴 ∈ On ∧ 𝐵𝑋) ∧ ∅ ∈ 𝐴) → (𝐴𝑜 suc 𝐵) = ((𝐴𝑜 𝐵) ·𝑜 𝐴))
5740, 56oe0lem 7480 1 ((𝐴 ∈ On ∧ 𝐵𝑋) → (𝐴𝑜 suc 𝐵) = ((𝐴𝑜 𝐵) ·𝑜 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  c0 3874  cmpt 4643  Ord word 5639  Oncon0 5640  Lim wlim 5641  suc csuc 5642  cfv 5804  (class class class)co 6549  reccrdg 7392  1𝑜c1o 7440   ·𝑜 comu 7445  𝑜 coe 7446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-omul 7452  df-oexp 7453
This theorem is referenced by:  oesuc  7494  onesuc  7497
  Copyright terms: Public domain W3C validator